microcrack detection
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 11 (8) ◽  
pp. 3655
Author(s):  
Gee-Soo Lee ◽  
Chan-Jung Kim

Microcracks of depth less than 200 μm in mechanical components are difficult to detect because conventional methods such as X-ray or eddy current measurements are less sensitive to such depths. Nonetheless, an efficient microcrack detection method is required urgently in the mechanical industry because microcracks are produced frequently during cold-forming. The frequency response function (FRF) is known to be highly sensitive even to microcracks, and it can be obtained using both the input data of an impact hammer and the response data of an accelerometer. Under the assumption of an impulse force with a similar spectral impulse pattern, spectral response data alone could be used as a crack indicator because the dynamic characteristics of a microcrack may be dependent solely on these measured data. This study investigates the feasibility of microcrack detection using the response data alone through impact tests with a simple rectangular specimen. A simple rectangular specimen with a 200 μm microcrack at one face was prepared. The experimental modal analysis was conducted for the normal (uncracked) specimen and found-first bending mode about 1090 Hz at the X-Y plane (in-plane). Response accelerations were obtained in both at in-plane locations as well as X-Z plane (out-of-plane), and the crack was detected using the coherence function between a normal and a cracked specimen. A comparison of the crack inspection results obtained using the response data and the FRF data indicated the validity of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xiang Zhang ◽  
Jianping Peng ◽  
Luquan Du ◽  
Jie Bai ◽  
Lingfan Feng ◽  
...  

Microcracks are a common metallic defect, resulting in degradation of material properties. In this paper, specimens with different fatigue microcracks were detected by eddy current pulsed thermography (ECPT). Signal processing algorithms were investigated to improve the detectability and sensitivity; principal component analysis (PCA) and Tucker decomposition were used to compare the performance of microcrack detection. It was found that both algorithms were highly adaptable. A thermal quotient was used to assess the temperature variation trend. Furthermore, the potential correspondence between crack closure and temperature change was investigated.


2021 ◽  
Vol 35 ◽  
Author(s):  
Jáder Camilo PINTO ◽  
Hernán COAGUILA-LLERENA ◽  
Fernanda Ferrari Esteves TORRES ◽  
Éverton LUCAS-OLIVEIRA ◽  
Tito José BONAGAMBA ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 792 ◽  
Author(s):  
Hsuan-Ling Kao ◽  
Cheng-Lin Cho ◽  
Li-Chun Chang ◽  
Chun-Bing Chen ◽  
Wen-Hung Chung ◽  
...  

A fully inkjet-printed strain sensor based on carbon nanotubes (CNTs) was fabricated in this study for microstrain and microcrack detection. Carbon nanotubes and silver films were used as the sensing layer and conductive layer, respectively. Inkjet-printed CNTs easily undergo agglomeration due to van der Waals forces between CNTs, resulting in uneven films. The uniformity of CNT film affects the electrical and mechanical properties. Multi-pass printing and pattern rotation provided precise quantities of sensing materials, enabling the realization of uniform CNT films and stable resistance. Three strain sensors printed eight-layer CNT film by unidirectional printing, rotated by 180° and 90° were compared. The low density on one side of eight-layer CNT film by unidirectional printing results in more disconnection and poor connectivity with the silver film, thereby, significantly increasing the resistance. For 180° rotation eight-layer strain sensors, lower sensitivity and smaller measured range were found because strain was applied to the uneven CNT film resulting in non-uniform strain distribution. Lower resistance and better strain sensitivity was obtained for eight-layer strain sensor with 90° rotation because of uniform film. Given the uniform surface morphology and saturated sheet resistance of the 20-layer CNT film, the strain performance of the 20-layer CNT strain sensor was also examined. Excluding the permanent destruction of the first strain, 0.76% and 1.05% responses were obtained for the 8- and 20-layer strain sensors under strain between 0% and 3128 µε, respectively, which demonstrates the high reproducibility and recoverability of the sensor. The gauge factor (GF) of 20-layer strain sensor was found to be 2.77 under strain from 71 to 3128 µε, which is higher than eight-layer strain sensor (GF = 1.93) due to the uniform surface morphology and stable resistance. The strain sensors exhibited a highly linear and reversible behavior under strain of 71 to 3128 µε, so that the microstrain level could be clearly distinguished. The technology of the fully inkjet-printed CNT-based microstrain sensor provides high reproducibility, stability, and rapid hardness detection.


2017 ◽  
Vol 248 ◽  
pp. 35-42 ◽  
Author(s):  
Giovanni Postiglione ◽  
Alessia Colombo ◽  
Claudia Dragonetti ◽  
Marinella Levi ◽  
Stefano Turri ◽  
...  

2014 ◽  
Vol 4 (1) ◽  
pp. 514-524 ◽  
Author(s):  
Mahmoud Abdelhamid ◽  
Rajendra Singh ◽  
Mohammed Omar

Sign in / Sign up

Export Citation Format

Share Document