scholarly journals HuBiogel incorporated fibro-porous hybrid nanomatrix graft for vascular tissue interfaces

2020 ◽  
Vol 17 ◽  
pp. 100323
Author(s):  
H.N. Patel ◽  
Y.K. Vohra ◽  
R.K. Singh ◽  
V. Thomas
Author(s):  
Patrick Echlin ◽  
Thomas Hayes ◽  
Clifford Lai ◽  
Greg Hook

Studies (1—4) have shown that it is possible to distinguish different stages of phloem tissue differentiation in the developing roots of Lemna minor by examination in the transmission, scanning, and optical microscopes. A disorganized meristem, immediately behind the root-cap, gives rise to the vascular tissue, which consists of single central xylem element surrounded by a ring of phloem parenchyma cells. This ring of cells is first seen at the 4-5 cell stage, but increases to as many as 11 cells by repeated radial anticlinal divisions. At some point, usually at or shortly after the 8 cell stage, two phloem parenchyma cells located opposite each other on the ring of cells, undergo an unsynchronized, periclinal division to give rise to the sieve element and companion cell. Because of the limited number of cells involved, this developmental sequence offers a relatively simple system in which some of the factors underlying cell division and differentiation may be investigated, including the distribution of diffusible low atomic weight elements within individual cells of the phloem tissue.


2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2006 ◽  
Vol 54 (S 1) ◽  
Author(s):  
K Kallenbach ◽  
J Heine ◽  
E Lefik ◽  
S Cebotari ◽  
A Lichtenberg ◽  
...  

2020 ◽  
Author(s):  
KJ Nunan ◽  
Ian Sims ◽  
A Bacic ◽  
SP Robinson ◽  
GB Fincher

Cell walls have been isolated from the mesocarp of mature grape (Vitis vinifera L.) berries. Tissue homogenates were suspended in 80% (v/v) ethanol to minimise the loss of water-soluble wall components and wet-sieved on nylon mesh to remove cytoplasmic material. The cell wall fragments retained on the sieve were subsequently treated with buffered phenol at pH 7.0, to inactivate any wall-bound enzymes and to dislodge small amounts of cytoplasmic proteins that adhered to the walls. Finally, the wall preparation was washed with chloroform/methanol (1:1, v/v) to remove lipids and dried by solvent exchange. Scanning electron microscopy showed that the wall preparation was essentially free of vascular tissue and adventitious protein of cytoplasmic origin. Compositional analysis showed that the walls consisted of approximately 90% by weight of polysaccharide and less than 10% protein. The protein component of the walls was shown to be rich in arginine and hydroxyproline residues. Cellulose and polygalacturonans were the major constituents, and each accounted for 30-40% by weight of the polysaccharide component of the walls. Substantial varietal differences were observed in the relative abundance of these two polysaccharides. Xyloglucans constituted approximately 10% of the polysaccharide fraction and the remainder was made up of smaller amounts of mannans, heteroxylans, arabinans and galactans.


Total twenty different processed meat plant producing emulsion type sausage were histologically and chemically examined for detection of adulteration with unauthorized tissues. Results revealed that samples were adulterated with different types of animal tissues included; hyaline cartilage, tendon, spongy bone, peripheral nerve trunk, basophilic matrix, lymphatic tissue, fascia, fibrocartilage and vascular tissue. Moreover, these samples were adulterated Also, adulterated with plant tissue included; plant stem, leaves and root. Chemical analysis showed a significant difference in their chemical composition (moisture, fat, protein, ash and calcium) content. Moisture and fat content varied around the permissible limit of E.S.S. while low protein, high ash and calcium content was detected in the examined samples. Therefore, Histological and chemical examinations can be used as reliable methods to detect adultration using unauthorized addition of both animal and plant tissues in processed meat product samples which revealed a high level of falsification.


2020 ◽  
Vol 27 (10) ◽  
pp. 1634-1646 ◽  
Author(s):  
Huey-Shan Hung ◽  
Shan-hui Hsu

Treatment of cardiovascular disease has achieved great success using artificial implants, particularly synthetic-polymer made grafts. However, thrombus formation and restenosis are the current clinical problems need to be conquered. New biomaterials, modifying the surface of synthetic vascular grafts, have been created to improve long-term patency for the better hemocompatibility. The vascular biomaterials can be fabricated from synthetic or natural polymers for vascular tissue engineering. Stem cells can be seeded by different techniques into tissue-engineered vascular grafts in vitro and implanted in vivo to repair the vascular tissues. To overcome the thrombogenesis and promote the endothelialization effect, vascular biomaterials employing nanotopography are more bio-mimic to the native tissue made and have been engineered by various approaches such as prepared as a simple surface coating on the vascular biomaterials. It has now become an important and interesting field to find novel approaches to better endothelization of vascular biomaterials. In this article, we focus to review the techniques with better potential improving endothelization and summarize for vascular biomaterial application. This review article will enable the development of biomaterials with a high degree of originality, innovative research on novel techniques for surface fabrication for vascular biomaterials application.


Sign in / Sign up

Export Citation Format

Share Document