In 38MnVS6 steel, the morphology of sulfide inclusion has a strong influence on the fatigue life and machinability of the steel. In most cases, the MnS inclusions show strip morphology after rolling, which significantly affects the steel quality. Usually, the MnS inclusion with a spherical morphology is the best morphology for the steel quality. In the present work, tellurium was applied to 38MnVS6 micro-alloyed steel to control the MnS inclusion. Trace tellurium was added into 38MnVS6 steel and the effect of Te on the morphology, composition, size and distribution of MnS inclusions were investigated. Experimental results show that with the increase of Te content, the equivalent diameter and the aspect ratio of inclusion decrease strikingly, and the number of inclusions with small aspect ratio increases. The inclusions are dissociated and spherized. The SEM-EDS analysis indicates that the trace Te mainly dissolves in MnS inclusion. Once the MnS is saturated with Te, MnTe starts to generate and wraps MnS. The critical Te/S value for the formation of MnTe in the 38MnV6 steel is determined to be approximately 0.075. With the increase of Te/S ratio, the aspect ratio of MnS inclusion decreases and gradually reaches a constant level. The Te/S value in the 38MnVS6 steel corresponding to the change of aspect ratio from decreasing to constant ranges from 0.096 to 0.255. This is most likely to be caused by the saturation of Te in the MnS inclusion. After adding Te in the steel, rod-like MnS inclusion is modified to small inclusion and the smaller the MnS inclusion, the lower the aspect ratio.