scholarly journals On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: Effects on morphology and properties

2016 ◽  
Vol 6 ◽  
pp. 81-91 ◽  
Author(s):  
Pablo J. Peruzzo ◽  
Pablo S. Anbinder ◽  
Francisco M. Pardini ◽  
Oscar R. Pardini ◽  
Tomas S. Plivelic ◽  
...  
2018 ◽  
Vol 47 (4) ◽  
pp. 290-299 ◽  
Author(s):  
Sainan Zhang ◽  
Xiankai Jiang

Purpose The purpose of this paper is to synthesize and characterize a series of two-component aromatic waterborne polyurethane (2K-WPU) which is composed of non-ionic and anionic polyisocyanate aqueous dispersion and polyurethane polyol aqueous dispersion. Design/methodology/approach The polyisocyanate aqueous dispersion was synthesized through non-ionic and anionic hydrophilic modification procedures. The values of the hydrogen bonding index (HBI) and molecule structures of WPU were obtained by Fourier transform infrared (FTIR). The thermal, mechanical and water resistance properties of 2K-WPU films were investigated. Findings The appearance of non-ionic polyisocyanate aqueous dispersion and anionic polyisocyanate aqueous dispersion was colorless translucent pan blue and yellow opaque emulsions, respectively. FTIR not only showed that 2K-WPU was obtained from the polymerization of polyisocyanate component and polyhydroxy component by polymerization but also showed that the content of hydrogen bondings of anionic 2K-WPU (WPU 2) was higher than non-ionic 2K-WPU (WPU 1). The glass-transition temperature (Tg), storage modulus and water resistance of WPU 2 were higher than WPU1, whereas the thermal stability of WPU1 was better than WPU 2. Practical implications The investigation established a method to prepare a series of 2K-WPU which was composed of non-ionic or anionic polyisocyanate aqueous dispersion and polyurethane polyol aqueous dispersion. The prepared 2K-WPU film could be applied as substrate resin material in the field of waterborne coating. Originality/value The paper established a method to synthesize a series of 2K-WPU. The effect of HBI value and the molecule structure of soft segment on the thermal stability, mechanical and water resistance properties of 2K-WPU films were studied.


2018 ◽  
Vol 47 (4) ◽  
pp. 315-322 ◽  
Author(s):  
Jizhi Zhang ◽  
Xiankai Jiang

Purpose The purpose of this paper is to synthesize and characterize a series of alicyclic two-component waterborne polyurethane (2K-WPU) which is composed of non-ionic polyisocyanate aqueous dispersion and hydroxyl aqueous dispersion. Design/methodology/approach The appearances of aqueous dispersions and 2K-WPU films were observed by photographs. The micromorphology of alicyclic polyisocyanate aqueous dispersion was examined by scanning electron microscopy (SEM). The molecule structures of WPU were studied by Fourier transform infrared (FTIR). The effect of NCO:OH molar ratio of two components and trimethylolpropane (TMP) content on the thermal stability, mechanical and water resistance properties of 2K-WPU films was studied. Findings It was found by SEM that alicyclic polyisocyanate particles in aqueous dispersion showed a kind of spherical particle appearance, in which hydrophobic polyisocyanate was encapsulated by hydrophilic ether linkages segment. FTIR showed that WPU was polymerized through mixture of polyisocyanate component and hydroxyl component and increasing NCO:OH molar ratio of two components from 1.1:1 to 1.5:1 had increased the content of urea, urethane and allophanate of 2K-WPU films. Increasing NCO:OH molar ratio had improved the mechanical and thermal properties of the 2K-WPU film, but the water resistance of the 2K-WPU film increased first and then weakened. Increasing TMP contents from 1 to 0.75 mol for 1:5 system had improved the mechanical, thermal and water resistance properties of the 2K-WPU film. Practical implications The investigation established a method to prepare alicyclic 2K-WPU which is composed of non-ionic polyisocyanate aqueous dispersion and hydroxyl aqueous dispersion. The prepared 2K-WPU film could be applied in the field of waterborne surface coating, e.g. textile, wood and synthetic leather surfaces (Hasan et al., 2017; Akindoyo et al., 2016). Originality/value The paper established a method to synthesize alicyclic two-component 2K-WPU. The effect of NCO:OH molar ratio and TMP content on the thermal stability, mechanical and water resistance properties of 2K-WPU films were studied.


2020 ◽  
Vol 23 ◽  
pp. 100911 ◽  
Author(s):  
Xiaodan Ding ◽  
Xue Wang ◽  
Hao Zhang ◽  
Tangyu Liu ◽  
Chengyu Hong ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 4784
Author(s):  
Ying Li ◽  
Sichong Chen ◽  
Jun Shen ◽  
Siqi Zhang ◽  
Ming Liu ◽  
...  

Biobased cationic waterborne polyurethanes (WPUs) were prepared using isophorone diisocyanate (IPDI), N-methyl diethanolamine (N-MDEA), polycaprolactone (PCL) diol, hydrochlotic acid (HCl), and 1,4-butanediol (BDO). To improve the mechanical performance and adhesive strength of the waterborne polyurethane films, different amounts of castor oil (CO) acting as a cross-linking agent were incorporated in the polyurethane structure. The structures of the waterborne polyurethanes were assessed by Fourier-transform infrared spectroscopy (FTIR). The combination of CO had a positive effect on the dispersion and stability properties of WPUs. WPUs containing higher content of CO demonstrated a remarkable enhancement in homogeneity among particles. The stable aqueous dispersion was obtained even when N-MDEA loading was as low as 3.2 wt%; a bonus of this low hydrophilic moiety was the excellent adhesive strength, whose T-peel strength could reach up to 36.8 N/25 mm, about 114% higher than that of WPU (17.2 N/25 mm) without any CO content. The elongation at break of CO7.40%-WPU was 391%. In addition, the fracture mechanism of the waterborne polyurethane films transformed from the brittle failure to the ductile fracture. The experiment results showed the CO-modified WPUs displayed excellent film-forming property, flexibility, and adhesion, which can be employed for constructing the eco-friendly, biodegradable, cationic, waterborne polyurethanes.


Sign in / Sign up

Export Citation Format

Share Document