scholarly journals An evaluation of the scanning electron microscope mirror effect to study viscoelastically prestressed polymeric matrix composites

2017 ◽  
Vol 12 ◽  
pp. 79-87 ◽  
Author(s):  
Chao Ge ◽  
Bing Wang ◽  
Kevin S. Fancey
Author(s):  
Hassan N. Al-Obaidi ◽  
Imad H. Khaleel

A theoretical investigation have been presented to exploring the influence of electrons beam current on the electron mirror image deduced inside the scanning electron microscope (SEM). A rough mathematical expression for the electric potential that associated with electron beam is derived. The results clearly shows that the beam current could be used to enhance or conversely deteriorate the phenomena of mirror effect. So this work procedure may consider to be tool controllable of this phenomena for investigation purposes.


2016 ◽  
Vol 852 ◽  
pp. 93-97 ◽  
Author(s):  
Manickam Ravichandran ◽  
Arumugam Manikandan ◽  
Meenakshi Sundaram Omkumar

Powder metallurgy is a popular technique to synthesize metal matrix composites with uniform distribution of the reinforcements. The present work aims to synthesize Al-B4C composites through powder metallurgy route and study their properties. The compositions of the composites are Al-5%B4C, Al-10%B4C & Al-15%B4C. Blending of powders, compaction and sintering process were carried out as per standard powder metallurgy procedure. The distributions of the reinforcements were analyzed for the sintered specimens by the help of scanning electron microscope. The effect addition of B4C in the Aluminium matrix on the properties such as density, porosity, hardness and compressive strength were discussed. Results show that addition of B4C improves the properties of Al-B4C composites.


Author(s):  
R. E. Ferrell ◽  
G. G. Paulson

The pore spaces in sandstones are the result of the original depositional fabric and the degree of post-depositional alteration that the rock has experienced. The largest pore volumes are present in coarse-grained, well-sorted materials with high sphericity. The chief mechanisms which alter the shape and size of the pores are precipitation of cementing agents and the dissolution of soluble components. Each process may operate alone or in combination with the other, or there may be several generations of cementation and solution.The scanning electron microscope has ‘been used in this study to reveal the morphology of the pore spaces in a variety of moderate porosity, orthoquartzites.


Author(s):  
C. T. Nightingale ◽  
S. E. Summers ◽  
T. P. Turnbull

The ease of operation of the scanning electron microscope has insured its wide application in medicine and industry. The micrographs are pictorial representations of surface topography obtained directly from the specimen. The need to replicate is eliminated. The great depth of field and the high resolving power provide far more information than light microscopy.


Author(s):  
K. Shibatomi ◽  
T. Yamanoto ◽  
H. Koike

In the observation of a thick specimen by means of a transmission electron microscope, the intensity of electrons passing through the objective lens aperture is greatly reduced. So that the image is almost invisible. In addition to this fact, it have been reported that a chromatic aberration causes the deterioration of the image contrast rather than that of the resolution. The scanning electron microscope is, however, capable of electrically amplifying the signal of the decreasing intensity, and also free from a chromatic aberration so that the deterioration of the image contrast due to the aberration can be prevented. The electrical improvement of the image quality can be carried out by using the fascionating features of the SEM, that is, the amplification of a weak in-put signal forming the image and the descriminating action of the heigh level signal of the background. This paper reports some of the experimental results about the thickness dependence of the observability and quality of the image in the case of the transmission SEM.


Sign in / Sign up

Export Citation Format

Share Document