The Broad Applications of the Scanning Electron Microscope

Author(s):  
C. T. Nightingale ◽  
S. E. Summers ◽  
T. P. Turnbull

The ease of operation of the scanning electron microscope has insured its wide application in medicine and industry. The micrographs are pictorial representations of surface topography obtained directly from the specimen. The need to replicate is eliminated. The great depth of field and the high resolving power provide far more information than light microscopy.

Author(s):  
Emil Bernstein

An interesting method for examining structures in g. pig skin has been developed. By modifying an existing technique for splitting skin into its two main components—epidermis and dermis—we can in effect create new surfaces which can be examined with the scanning electron microscope (SEM). Although this method is not offered as a complete substitute for sectioning, it provides the investigator with a means for examining certain structures such as hair follicles and glands intact. The great depth of field of the SEM complements the technique so that a very “realistic” picture of the organ is obtained.


1995 ◽  
Vol 73 (11) ◽  
pp. 1842-1847 ◽  
Author(s):  
Christian R. Lacroix ◽  
Judith MacIntyre

This modification to the technique of epi-illumination light microscopy makes use of a new system of lenses that replaces expensive and not readily available dipping cone objectives. The newer objectives offer at least comparable resolution and depth of field, along with simple preparation procedures. An epi-illumination system is a good intermediate between the stereo microscope and a scanning electron microscope, offering magnification at high power that can aid in evaluation of potential scanning electron microscope specimens, as well as the time- and material-saving feature of being able to eliminate unsuitable scanning electron microscope specimens. Key words: technique, epi-illumination, morphogenesis, vegetative apex, primordium, staining.


1989 ◽  
Vol 4 ◽  
pp. 351-355
Author(s):  
Walter C. Sweet

In the last two decades, scanning electron miocroscopy has come to be the technique of choice in studies of microfossil structure and morphology. Scanning electron microscope (SEM) photomicrographs are easy to produce, have great depth of field, and resolve minute details over a wide range of magnifications. Hence photomicrographs of images produced in a SEM are now more widely used than ordinary photographs in the illustration of microfossils. Techniques for preparation, mounting and manipulation of specimens in the SEM vary with the instrument available, aims of the study, and skill of the operator. Hence attention is directed here primarily to general aspects of SEM technique.


Author(s):  
Michael T. Postek

The term ultimate resolution or resolving power is the very best performance that can be obtained from a scanning electron microscope (SEM) given the optimum instrumental conditions and sample. However, as it relates to SEM users, the conventional definitions of this figure are ambiguous. The numbers quoted for the resolution of an instrument are not only theoretically derived, but are also verified through the direct measurement of images on micrographs. However, the samples commonly used for this purpose are specifically optimized for the measurement of instrument resolution and are most often not typical of the sample used in practical applications.SEM RESOLUTION. Some instruments resolve better than others either due to engineering design or other reasons. There is no definitively accurate definition of how to quantify instrument resolution and its measurement in the SEM.


Sign in / Sign up

Export Citation Format

Share Document