Defect Analysis and Fatigue Strength Prediction of As-built Ti6Al4V Parts, Produced Using Electron Beam Melting (EBM) AM Technology

Materialia ◽  
2021 ◽  
pp. 101041
Author(s):  
Md Jamal Mian ◽  
Jafar Razmi ◽  
Leila Ladani
1995 ◽  
Vol 81 (10) ◽  
pp. 1019-1024 ◽  
Author(s):  
Toshiyuki TORIYAMA ◽  
Yukitaka MURAKAMI ◽  
Teruo YAMASHITA ◽  
Kazuichi TSUBOTA ◽  
Kyozaburo FURUMURA

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2216 ◽  
Author(s):  
Hitoshi Soyama ◽  
Fumio Takeo

Titanium alloy Ti6Al4V manufactured by additive manufacturing (AM) is an attractive material, but the fatigue strength of AM Ti6Al4V is remarkably weak. Thus, post-processing is very important. Shot peening can improve the fatigue strength of metallic materials, and novel peening methods, such as cavitation peening and laser peening, have been developed. In the present paper, to demonstrate an improvement of the fatigue strength of AM Ti6Al4V, Ti6Al4V manufactured by direct metal laser sintering (DMLS) and electron beam melting (EBM) was treated by cavitation peening, laser peening, and shot peening, then tested by a plane bending fatigue test. To clarify the mechanism of the improvement of the fatigue strength of AM Ti6Al4V, the surface roughness, residual stress, and surface hardness were measured, and the surfaces with and without peening were also observed using a scanning electron microscope. It was revealed that the fatigue strength at N = 107 of Ti6Al4V manufactured by DMLS was slightly better than that of Ti6Al4V manufactured by EBM, and the fatigue strength of both the DMLS and EBM specimens was improved by about two times through cavitation peening, compared with the as-built ones. An experimental formula to estimate fatigue strength from the mechanical properties of a surface was proposed.


2018 ◽  
Vol 941 ◽  
pp. 1597-1602
Author(s):  
Ken Cho ◽  
Ryota Kobayashi ◽  
Takuma Fukuoka ◽  
Jong Yeong Oh ◽  
Hiroyuki Y. Yasuda ◽  
...  

The effect of a unique layered microstructure consisting of duplex-like region and equiaxed γ grains (γ bands) on the fatigue properties of Ti-48Al-2Cr-2Nb alloy bars fabricated by electron beam melting (EBM) at an angle (θ) of 90° between the building direction and cylinder (loading) axis was investigated focusing on the layered microstructure and test temperature. We found the room temperature (RT) fatigue strength of the alloy bars fabricated at θ = 90° is higher than that of the bars fabricated at θ = 0°. Moreover, it is comparable to that of the cast alloys with hot isostatic pressing (HIP) treatment in low-cycle fatigue life region, even without HIP treatment. The high fatigue strength of the bars at RT is attributed to the γ band, which acts as a resistance for crack propagation directed perpendicular to the γ band. On the other hand, the fatigue strength of the bars at θ = 90° is lower than that of the bars at θ = 0° in low-cycle fatigue life region at 1023 K. This is because the γ bands dose not act as a resistance for crack propagation at 1023 K. Although the bars at θ = 90° exhibits low fatigue strength in the region at 1023 K, that value is comparable to that of HIP-treated cast alloys due to the fine grain size, which is one of the features for the alloys fabricated by the EBM.


2020 ◽  
Vol 39 (4) ◽  
Author(s):  
Jan Kober ◽  
Alexander Kirchner ◽  
Alena Kruisova ◽  
Milan Chlada ◽  
Sigrun Hirsekorn ◽  
...  

2021 ◽  
pp. 153041
Author(s):  
Elizabeth A.I. Ellis ◽  
Michael A. Sprayberry ◽  
Christopher Ledford ◽  
Jameson P. Hankwitz ◽  
Michael M. Kirka ◽  
...  

Author(s):  
Mohammad Karimzadeh Kolamroudi ◽  
Mohammed Asmael ◽  
Mustafa Ilkan ◽  
Naser Kordani

Sign in / Sign up

Export Citation Format

Share Document