scholarly journals A population scale analysis of rare SNCA variation in the UK Biobank

2021 ◽  
Vol 148 ◽  
pp. 105182
Author(s):  
Cornelis Blauwendraat ◽  
Mary B. Makarious ◽  
Hampton L. Leonard ◽  
Sara Bandres-Ciga ◽  
Hirotaka Iwaki ◽  
...  
2017 ◽  
Vol 44 (6) ◽  
pp. 1293-1300 ◽  
Author(s):  
Joseph Firth ◽  
Brendon Stubbs ◽  
Davy Vancampfort ◽  
Felipe B Schuch ◽  
Simon Rosenbaum ◽  
...  

2021 ◽  
Author(s):  
William Zhu ◽  
Xiaoping Huang ◽  
Esther Yoon ◽  
Sara P Bandres Ciga ◽  
Cornelis Blauwendraat ◽  
...  

PRKN mutations are the most common recessive cause of Parkinson′s disease (PD) and are a promising target for gene and cell replacement therapies. Identification of biallelic PRKN patients (PRKN-PD) at the population scale, however, remains a challenge, as roughly half are copy number variants (CNVs) and many single nucleotide polymorphisms (SNPs) are of unclear significance. Additionally, the true prevalence and disease risk associated with heterozygous PRKN mutations is unclear, as a comprehensive assessment of PRKN SNPs and CNVs has not been performed at a population scale. To address these challenges, we evaluated PRKN mutations in 2 cohorts analyzed with both a genotyping array and exome or genome sequencing: the NIH PD cohort, a deeply phenotyped cohort of PD patients, and the UK Biobank, a population scale cohort with nearly half a million participants. Genotyping array identified the majority of PRKN mutations and at least 1 mutation in most biallelic PRKN mutation carriers in both cohorts. Additionally, in the NIH PD cohort, functional assays of patient fibroblasts resolved variants of unclear significance in biallelic carriers and ruled out cryptic loss of function variants in monoallelic carriers. In the UK Biobank, we identified 2,692 PRKN CNVs from genotyping array data from nearly half a million participants (the largest collection to date). Deletions or duplications involving exons 2 accounted for roughly half of all CNVs and the vast majority (88%) involved exons 2, 3, or 4. Combining estimates from whole exome sequencing (from ~200,000 participants) and genotyping array data, we found a pathogenic PRKN mutation in 1.8% of participants and 2 mutations in ~1/7,800 participants. Those with 1 PRKN pathogenic variant were as likely as non-carriers to have PD (OR = 0.91, CI= 0.58 – 1.38, p-value = 0.76) or a parent with PD (OR = 1.12, CI = 0.94 – 1.31, p-value = 0.19). Together our results demonstrate that heterozygous pathogenic PRKN mutations are common in the population but do not increase the risk of PD. Additionally, they suggest a cost-effective framework to screen for biallelic PRKN patients at the population scale for targeted studies.


Author(s):  
Ardalan Naseri ◽  
Kecong Tang ◽  
Xin Geng ◽  
Junjie Shi ◽  
Jing Zhang ◽  
...  

AbstractWhen modern biobanks collect genotype information for a significant fraction of a population, dense genetic connections of a person can be traced using identity by descent (IBD) segments. These connections offer opportunities to characterize individuals in the context of the underlying populations. Here, we conducted an individual-centric analysis of IBDs among the UK Biobank participants that represent 0.7% of the UK population. On average, one UK individual shares IBDs over 5 cM with 14,000 UK Biobank participants, which we refer to as “cousins”. Using these segments, approximately 80% of a person’s genome can be reconstructed. Also, using changes of cousin counts sharing IBDs at different lengths, we identified a group, potentially British Jews, who has a distinct pattern of familial expansion history. Finally, using the enrichment of cousins in one’s neighborhood, we identified regional variations of personal preference favoring living closer to one’s extended families. In summary, our analysis revealed genetic makeup, personal genealogical history, and social behaviors at population scale, opening possibilities for further studies of individual’s genetic connections in biobank data.


2019 ◽  
Author(s):  
Elizabeth Curtis ◽  
Justin Liu ◽  
Kate Ward ◽  
Karen Jameson ◽  
Zahra Raisi-Estabragh ◽  
...  

2020 ◽  
Author(s):  
John E. McGeary ◽  
Chelsie Benca-Bachman ◽  
Victoria Risner ◽  
Christopher G Beevers ◽  
Brandon Gibb ◽  
...  

Twin studies indicate that 30-40% of the disease liability for depression can be attributed to genetic differences. Here, we assess the explanatory ability of polygenic scores (PGS) based on broad- (PGSBD) and clinical- (PGSMDD) depression summary statistics from the UK Biobank using independent cohorts of adults (N=210; 100% European Ancestry) and children (N=728; 70% European Ancestry) who have been extensively phenotyped for depression and related neurocognitive phenotypes. PGS associations with depression severity and diagnosis were generally modest, and larger in adults than children. Polygenic prediction of depression-related phenotypes was mixed and varied by PGS. Higher PGSBD, in adults, was associated with a higher likelihood of having suicidal ideation, increased brooding and anhedonia, and lower levels of cognitive reappraisal; PGSMDD was positively associated with brooding and negatively related to cognitive reappraisal. Overall, PGS based on both broad and clinical depression phenotypes have modest utility in adult and child samples of depression.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A273-A273
Author(s):  
Xi Zheng ◽  
Ma Cherrysse Ulsa ◽  
Peng Li ◽  
Lei Gao ◽  
Kun Hu

Abstract Introduction While there is emerging evidence for acute sleep disruption in the aftermath of coronavirus disease 2019 (COVID-19), it is unknown whether sleep traits contribute to mortality risk. In this study, we tested whether earlier-life sleep duration, chronotype, insomnia, napping or sleep apnea were associated with increased 30-day COVID-19 mortality. Methods We included 34,711 participants from the UK Biobank, who presented for COVID-19 testing between March and October 2020 (mean age at diagnosis: 69.4±8.3; range 50.2–84.6). Self-reported sleep duration (less than 6h/6-9h/more than 9h), chronotype (“morning”/”intermediate”/”evening”), daytime dozing (often/rarely), insomnia (often/rarely), napping (often/rarely) and presence of sleep apnea (ICD-10 or self-report) were obtained between 2006 and 2010. Multivariate logistic regression models were used to adjust for age, sex, education, socioeconomic status, and relevant risk factors (BMI, hypertension, diabetes, respiratory diseases, smoking, and alcohol). Results The mean time between sleep measures and COVID-19 testing was 11.6±0.9 years. Overall, 5,066 (14.6%) were positive. In those who were positive, 355 (7.0%) died within 30 days (median = 8) after diagnosis. Long sleepers (>9h vs. 6-9h) [20/103 (19.4%) vs. 300/4,573 (6.6%); OR 2.09, 95% 1.19–3.64, p=0.009), often daytime dozers (OR 1.68, 95% 1.04–2.72, p=0.03), and nappers (OR 1.52, 95% 1.04–2.23, p=0.03) were at greater odds of mortality. Prior diagnosis of sleep apnea also saw a two-fold increased odds (OR 2.07, 95% CI: 1.25–3.44 p=0.005). No associations were seen for short sleepers, chronotype or insomnia with COVID-19 mortality. Conclusion Data across all current waves of infection show that prior sleep traits/disturbances, in particular long sleep duration, daytime dozing, napping and sleep apnea, are associated with increased 30-day mortality after COVID-19, independent of health-related risk factors. While sleep health traits may reflect unmeasured poor health, further work is warranted to examine the exact underlying mechanisms, and to test whether sleep health optimization offers resilience to severe illness from COVID-19. Support (if any) NIH [T32GM007592 and R03AG067985 to L.G. RF1AG059867, RF1AG064312, to K.H.], the BrightFocus Foundation A2020886S to P.L. and the Foundation of Anesthesia Education and Research MRTG-02-15-2020 to L.G.


Sign in / Sign up

Export Citation Format

Share Document