scholarly journals Leak-before-break analysis of thermally aged nuclear pipe under different bending moments

2015 ◽  
Vol 47 (6) ◽  
pp. 712-718 ◽  
Author(s):  
Xuming Lv ◽  
Shilei Li ◽  
Hailong Zhang ◽  
Yanli Wang ◽  
Zhaoxi Wang ◽  
...  
2014 ◽  
Vol 1065-1069 ◽  
pp. 1052-1056
Author(s):  
Radim Čajka ◽  
Jana Vaskova

For decades attention has been paid to interaction of foundation structures and subsoil and development of interaction models. Currently there are several software that, can deal with the interaction of foundations and subsoil. The purpose of this paper is to compare resulting deformation of the slab, subsidence of the subsoil, bending moments and contact stress calculated by two different software based on FEM calculations. Calculated deformation of the slab is compared with deformation measured during experiment.


Author(s):  
Manish Kumar ◽  
Pronab Roy ◽  
Kallol Khan

From the recent literature, it is revealed that pipe bend geometry deviates from the circular cross-section due to pipe bending process for any bend angle, and this deviation in the cross-section is defined as the initial geometric imperfection. This paper focuses on the determination of collapse moment of different angled pipe bends incorporated with initial geometric imperfection subjected to in-plane closing and opening bending moments. The three-dimensional finite element analysis is accounted for geometric as well as material nonlinearities. Python scripting is implemented for modeling the pipe bends with initial geometry imperfection. The twice-elastic-slope method is adopted to determine the collapse moments. From the results, it is observed that initial imperfection has significant impact on the collapse moment of pipe bends. It can be concluded that the effect of initial imperfection decreases with the decrease in bend angle from 150∘ to 45∘. Based on the finite element results, a simple collapse moment equation is proposed to predict the collapse moment for more accurate cross-section of the different angled pipe bends.


1977 ◽  
Vol 44 (3) ◽  
pp. 509-511 ◽  
Author(s):  
P. K. Ghosh

The problem of large deflection of a rectangular plate resting on a Pasternak-type foundation and subjected to a uniform lateral load has been investigated by utilizing the linearized equation of plates due to H. M. Berger. The solutions derived and based on the effect of the two base parameters have been carried to practical conclusions by presenting graphs for bending moments and shear forces for a square plate with all edges simply supported.


1970 ◽  
Vol 92 (4) ◽  
pp. 827-833 ◽  
Author(s):  
D. W. Dareing ◽  
R. F. Neathery

Newton’s method is used to solve the nonlinear differential equations of bending for marine pipelines suspended between a lay-barge and the ocean floor. Newton’s method leads to linear differential equations, which are expressed in terms of finite differences and solved numerically. The success of Newton’s method depends on initial trial solutions, which in this paper are catenaries. Iterative solutions converge rapidly toward the exact solution (pipe deflection) even though large bending moments exist in the pipe. Example calculations are given for a 48-in. pipeline suspended in 300 ft of water.


Author(s):  
Kunio Hasegawa ◽  
Yinsheng Li ◽  
Bostjan Bezensek ◽  
Phuong Hoang

Piping items in power plants may experience combined bending and torsion moments during operation. Currently, there is a lack of guidance in the ASME B&PV Code Section XI for combined loading modes including pressure, torsion and bending. Finite element analyses were conducted for 24-inch diameter Schedule 80 pipes with local wall thinning subjected to tensile and compressive stresses. Plastic collapse bending moments were calculated under constant torsion moments. From the calculation results, it can be seen that collapse bending moment for pipes with local thinning subjected to tensile stress is smaller than that subjected to compressive stress. In addition, equivalent moment is defined as the root the sum of the squares of the torsion and bending moments. It is found that the equivalent moments can be approximated with the pure bending moments, when the wall thinning length is equal or less than 7.73R·t for the wall thinning depth of 75% of the nominal thickness, where R is the mean radius and t is the wall thickness of the pipe.


2018 ◽  
Vol 18 (1) ◽  
pp. 2-20 ◽  
Author(s):  
Panagiota Kokkali ◽  
Anthony Tessari ◽  
Tarek Abdoun ◽  
Richard Varuso ◽  
Jehu Johnson ◽  
...  
Keyword(s):  

1963 ◽  
Vol 30 (1) ◽  
pp. 134-135
Author(s):  
E. A. Utecht

Curves are presented which give stress intensification factors for curved, thin-walled circular tubes under various combinations of in-plane and out-of-plane bending moments.


Sign in / Sign up

Export Citation Format

Share Document