Reexamining the Neural Network Involved in Perception of Facial Expression: A Meta-analysis

Author(s):  
Mingtong Liu ◽  
Chang Hong Liu ◽  
Shuang Zheng ◽  
Ke Zhao ◽  
Xiaolan Fu
Cortex ◽  
2018 ◽  
Vol 103 ◽  
pp. 240-255 ◽  
Author(s):  
Veronika I. Müller ◽  
Yvonne Höhner ◽  
Simon B. Eickhoff

2020 ◽  
Vol 8 (2) ◽  
pp. 68-84
Author(s):  
Naoki Imamura ◽  
Hiroki Nomiya ◽  
Teruhisa Hochin

Facial expression intensity has been proposed to digitize the degree of facial expressions in order to retrieve impressive scenes from lifelog videos. The intensity is calculated based on the correlation of facial features compared to each facial expression. However, the correlation is not determined objectively. It should be determined statistically based on the contribution score of the facial features necessary for expression recognition. Therefore, the proposed method recognizes facial expressions by using a neural network and calculates the contribution score of input toward the output. First, the authors improve some facial features. After that, they verify the score correctly by comparing the accuracy transitions depending on reducing useful and useless features and process the score statistically. As a result, they extract useful facial features from the neural network.


2013 ◽  
Vol 37 (5) ◽  
pp. 930-949 ◽  
Author(s):  
Sébastien Hétu ◽  
Mathieu Grégoire ◽  
Arnaud Saimpont ◽  
Michel-Pierre Coll ◽  
Fanny Eugène ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3689
Author(s):  
Suzanna Hutt ◽  
Denis Mihaies ◽  
Emmanouil Karteris ◽  
Agnieszka Michael ◽  
Annette M. Payne ◽  
...  

Objectives: In this study we wished to determine the rank order of risk factors for endometrial cancer and calculate a pooled risk and percentage risk for each factor using a statistical meta-analysis approach. The next step was to design a neural network computer model to predict the overall increase or decreased risk of cancer for individual patients. This would help to determine whether this prediction could be used as a tool to decide if a patient should be considered for testing and to predict diagnosis, as well as to suggest prevention measures to patients. Design: A meta-analysis of existing data was carried out to calculate relative risk, followed by design and implementation of a risk prediction computational model based on a neural network algorithm. Setting: Meta-analysis data were collated from various settings from around the world. Primary data to test the model were collected from a hospital clinic setting. Participants: Data from 40 patients notes currently suspected of having endometrial cancer and undergoing investigations and treatment were collected to test the software with their cancer diagnosis not revealed to the software developers. Main outcome measures: The forest plots allowed an overall relative risk and percentage risk to be calculated from all the risk data gathered from the studies. A neural network computational model to determine percentage risk for individual patients was developed, implemented, and evaluated. Results: The results show that the greatest percentage increased risk was due to BMI being above 25, with the risk increasing as BMI increases. A BMI of 25 or over gave an increased risk of 2.01%, a BMI of 30 or over gave an increase of 5.24%, and a BMI of 40 or over led to an increase of 6.9%. PCOS was the second highest increased risk at 4.2%. Diabetes, which is incidentally also linked to an increased BMI, gave a significant increased risk along with null parity and noncontinuous HRT of 1.54%, 1.2%, and 0.56% respectively. Decreased risk due to contraception was greatest with IUD (intrauterine device) and IUPD (intrauterine progesterone device) at −1.34% compared to −0.9% with oral. Continuous HRT at −0.75% and parity at −0.9% also decreased the risk. Using open-source patient data to test our computational model to determine risk, our results showed that the model is 98.6% accurate with an algorithm sensitivity 75% on average. Conclusions: In this study, we successfully determined the rank order of risk factors for endometrial cancer and calculated a pooled risk and risk percentage for each factor using a statistical meta-analysis approach. Then, using a computer neural network model system, we were able to model the overall increase or decreased risk of cancer and predict the cancer diagnosis for particular patients to an accuracy of over 98%. The neural network model developed in this study was shown to be a potentially useful tool in determining the percentage risk and predicting the possibility of a given patient developing endometrial cancer. As such, it could be a useful tool for clinicians to use in conjunction with other biomarkers in determining which patients warrant further preventative interventions to avert progressing to endometrial cancer. This result would allow for a reduction in the number of unnecessary invasive tests on patients. The model may also be used to suggest interventions to decrease the risk for a particular patient. The sensitivity of the model limits it at this stage due to the small percentage of positive cases in the datasets; however, since this model utilizes a neural network machine learning algorithm, it can be further improved by providing the system with more and larger datasets to allow further refinement of the neural network.


1994 ◽  
Vol 33 (01) ◽  
pp. 157-160 ◽  
Author(s):  
S. Kruse-Andersen ◽  
J. Kolberg ◽  
E. Jakobsen

Abstract:Continuous recording of intraluminal pressures for extended periods of time is currently regarded as a valuable method for detection of esophageal motor abnormalities. A subsequent automatic analysis of the resulting motility data relies on strict mathematical criteria for recognition of pressure events. Due to great variation in events, this method often fails to detect biologically relevant pressure variations. We have tried to develop a new concept for recognition of pressure events based on a neural network. Pressures were recorded for over 23 hours in 29 normal volunteers by means of a portable data recording system. A number of pressure events and non-events were selected from 9 recordings and used for training the network. The performance of the trained network was then verified on recordings from the remaining 20 volunteers. The accuracy and sensitivity of the two systems were comparable. However, the neural network recognized pressure peaks clearly generated by muscular activity that had escaped detection by the conventional program. In conclusion, we believe that neu-rocomputing has potential advantages for automatic analysis of gastrointestinal motility data.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 349-351
Author(s):  
H. Mizuta ◽  
K. Kawachi ◽  
H. Yoshida ◽  
K. Iida ◽  
Y. Okubo ◽  
...  

Abstract:This paper compares two classifiers: Pseudo Bayesian and Neural Network for assisting in making diagnoses of psychiatric patients based on a simple yes/no questionnaire which is provided at the outpatient’s first visit to the hospital. The classifiers categorize patients into three most commonly seen ICD classes, i.e. schizophrenic, emotional and neurotic disorders. One hundred completed questionnaires were utilized for constructing and evaluating the classifiers. Average correct decision rates were 73.3% for the Pseudo Bayesian Classifier and 77.3% for the Neural Network classifier. These rates were higher than the rate which an experienced psychiatrist achieved based on the same restricted data as the classifiers utilized. These classifiers may be effectively utilized for assisting psychiatrists in making their final diagnoses.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


Sign in / Sign up

Export Citation Format

Share Document