A compound control method based on the adaptive neural network and sliding mode control for inertial stable platform

2015 ◽  
Vol 155 ◽  
pp. 286-294 ◽  
Author(s):  
Ying Zou ◽  
Xusheng Lei
2021 ◽  
pp. 002029402110211
Author(s):  
Tao Chen ◽  
Damin Cao ◽  
Jiaxin Yuan ◽  
Hui Yang

This paper proposes an observer-based adaptive neural network backstepping sliding mode controller to ensure the stability of switched fractional order strict-feedback nonlinear systems in the presence of arbitrary switchings and unmeasured states. To avoid “explosion of complexity” and obtain fractional derivatives for virtual control functions continuously, the fractional order dynamic surface control (DSC) technology is introduced into the controller. An observer is used for states estimation of the fractional order systems. The sliding mode control technology is introduced to enhance robustness. The unknown nonlinear functions and uncertain disturbances are approximated by the radial basis function neural networks (RBFNNs). The stability of system is ensured by the constructed Lyapunov functions. The fractional adaptive laws are proposed to update uncertain parameters. The proposed controller can ensure convergence of the tracking error and all the states remain bounded in the closed-loop systems. Lastly, the feasibility of the proposed control method is proved by giving two examples.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Yanchao Yin ◽  
Hongwei Niu ◽  
Xiaobao Liu

A novel neural network sliding mode control based on multicommunity bidirectional drive collaborative search algorithm (M-CBDCS) is proposed to design a flight controller for performing the attitude tracking control of a quad tilt rotors aircraft (QTRA). Firstly, the attitude dynamic model of the QTRA concerning propeller tension, channel arm, and moment of inertia is formulated, and the equivalent sliding mode control law is stated. Secondly, an adaptive control algorithm is presented to eliminate the approximation error, where a radial basis function (RBF) neural network is used to online regulate the equivalent sliding mode control law, and the novel M-CBDCS algorithm is developed to uniformly update the unknown neural network weights and essential model parameters adaptively. The nonlinear approximation error is obtained and serves as a novel leakage term in the adaptations to guarantee the sliding surface convergence and eliminate the chattering phenomenon, which benefit the overall attitude control performance for QTRA. Finally, the appropriate comparisons among the novel adaptive neural network sliding mode control, the classical neural network sliding mode control, and the dynamic inverse PID control are examined, and comparative simulations are included to verify the efficacy of the proposed control method.


2018 ◽  
Vol 2018 ◽  
pp. 1-19
Author(s):  
Rostand Marc Douanla ◽  
Godpromesse Kenné ◽  
François Béceau Pelap ◽  
Armel Simo Fotso

A modified control scheme based on the combination of online trained neural network and sliding mode techniques is proposed to enhance maximum power extraction for a grid connected permanent magnet synchronous generator (PMSG) wind turbine system. The proposed control method does not need the knowledge of the uncertainty bounds nor the exact model of the nonlinear system. Since the neural network is trained online, the time to estimate good weights can affect the dynamic performance of the process during the startup phase. Therefore an appropriate way to smoothly and explicitly accelerate the neural network rate of convergence during the startup phase is proposed. Furthermore, a flexible grid side voltage source converter control structure which can handle both grid connected and standalone modes based on conventional proportional integral (PI) control method is presented. Simulations are done in Matlab/Simulink environment to verify the effectiveness and assess the performance of the proposed controller. The results analysis shows the superiority of the proposed RBF neuro-sliding mode controller compared to a nonlinear controller based on sliding mode control method when the system undergoes parameter uncertainties.


Sign in / Sign up

Export Citation Format

Share Document