Event driven tracking control algorithm for marine vessel based on backstepping method

2016 ◽  
Vol 207 ◽  
pp. 669-675 ◽  
Author(s):  
Jianfang Jiao ◽  
Guang Wang
2021 ◽  
Vol 01 (01) ◽  
pp. 2150001
Author(s):  
Jianye Gong ◽  
Yajie Ma ◽  
Bin Jiang ◽  
Zehui Mao

In this paper, the adaptive fault-tolerant formation tracking control problem for a set of heterogeneous unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) systems with actuator loss of effectiveness faults is investigated. The cooperative fault-tolerant formation control strategy for UAV and UGV collaborative systems is classified into the altitude consensus control scheme for follower UAVs and the position cooperative formation control scheme for all followers. The altitude consensus control algorithm is designed by utilizing backstepping control technique to drive all UAVs to a desired predefined height. Then, based on synchronization formation error information, the position cooperative formation control algorithm is proposed for all followers to reach the expected position and perform the desired formation configuration. The adaptive fault estimation term is adopted in the designed fault-tolerant formation control algorithm to compensate for the actuator loss of effectiveness fault. Finally, a simulation example is proposed to reveal the validity of the designed cooperative formation tracking control scheme.


Author(s):  
Anna Witkowska ◽  
Roman Śmierzchalski

The article discusses the problem of designing a proper and efficient adaptive course-keeping control system for a seagoing ship based on the adaptive backstepping method. The proposed controller in the design stage takes into account the dynamic properties of the steering gear and the full nonlinear static maneuvering characteristic. The adjustable parameters of the achieved nonlinear control structure were tuned up by using the genetic algorithm in order to optimize the system performance. A realistic full-scale simulation model of the B-481 type vessel including wave and wind effects was applied to simulate the control algorithm by using time domain analysis.


2020 ◽  
Vol 17 (5) ◽  
pp. 172988142093854
Author(s):  
Di Wu ◽  
Lichao Hao ◽  
Xiujun Xu ◽  
Hongjian Wang ◽  
Jiajia Zhou

Cooperative tracking control problem of multiple water–land amphibious robots is discussed in this article with consideration of unknown nonlinear dynamics. Firstly, the amphibious robot dynamic model is formulated as an uncoupled nonlinear one in horizontal plane through eliminating relatively small sway velocity of the platform. Then cooperative tracking control algorithm is proposed with a two-stage strategy including dynamic control stage and kinematic control stage. In dynamic control stage, adaptive consensus control algorithm is obtained with estimating nonlinear properties of amphibious robots and velocities of the leader by neural network with unreliable communication links which is always the case in underwater applications. After that, kinematic cooperative controller is presented to guarantee formation stability of multiple water–land amphibious robots system in kinematic control stage. As a result, with the implementation of graph theory and Lyapunov theory, the stability of the formation tracking of multiple water–land amphibious robots system is proved with consideration of jointly connected communication graph. At last, simulations are carried out to prove the effectiveness of the proposed approaches.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bingyou Liu ◽  
Zhengzheng Zhang ◽  
Lichao Wang ◽  
Xing Li ◽  
Xiongfeng Deng

A tracking control algorithm of nonlinear multiple agents with undirected communication is studied for each multiagent system affected by external interference and input saturation. A control design scheme combining iterative learning and adaptive control is proposed to perform parameter adaptive time-varying adjustment and prove the effectiveness of the control protocol by designing Lyapunov functions. Simulation results show that the high-precision tracking control problem of the nonlinear multiagent system based on adaptive iterative learning control can be well realized even when the input is saturated. Finally, the validity of the proposed algorithm is verified by numerical analysis.


2013 ◽  
Vol 28 (3) ◽  
pp. 565-575 ◽  
Author(s):  
Ashraf Ahmed ◽  
Li Ran ◽  
Sol Moon ◽  
Joung-Hu Park

Sign in / Sign up

Export Citation Format

Share Document