Data-based output tracking formation control for heterogeneous MIMO multiagent systems under switching topologies

2021 ◽  
Vol 422 ◽  
pp. 322-331
Author(s):  
Weizhao Song ◽  
Jian Feng ◽  
Shaoxin Sun
2019 ◽  
Vol 30 (2) ◽  
pp. 652-664 ◽  
Author(s):  
Xiaofan Liu ◽  
Yongfang Xie ◽  
Fanbiao Li ◽  
Peng Shi ◽  
Weihua Gui ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yeong-Hwa Chang ◽  
Chun-Lin Chen ◽  
Wei-Shou Chan ◽  
Hung-Wei Lin ◽  
Chia-Wen Chang

This paper aims to investigate the formation control of leader-follower multiagent systems, where the problem of collision avoidance is considered. Based on the graph-theoretic concepts and locally distributed information, a neural fuzzy formation controller is designed with the capability of online learning. The learning rules of controller parameters can be derived from the gradient descent method. To avoid collisions between neighboring agents, a fuzzy separation controller is proposed such that the local minimum problem can be solved. In order to highlight the advantages of this fuzzy logic based collision-free formation control, both of the static and dynamic leaders are discussed for performance comparisons. Simulation results indicate that the proposed fuzzy formation and separation control can provide better formation responses compared to conventional consensus formation and potential-based collision-avoidance algorithms.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xuejing Lan ◽  
Wenbiao Xu ◽  
Yun-Shan Wei

This paper considers the distributed 3-dimensional (3D) distance-based formation control of multiagent systems, where the agents are connected based on an acyclic minimally structural persistent (AMSP) graph. A parameter is designed according to the desired formation shape and is used to solve the problem that there are two formation shapes satisfying the same distance requirements. The unknown moving velocity of the leader agent is estimated adaptively by the followers requiring only the relative position measurements with respect to their local coordinate systems. In addition, the proposed formation controller provides a new way for the agent to leave the initial coplanar location. The 3D formation control law is globally asymptotically stable and has been demonstrated based on the Lyapunov theorem. Finally, two numerical simulations are presented to support the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document