Altered expression of tight junction proteins and matrix metalloproteinases in thiamine-deficient mouse brain

2009 ◽  
Vol 55 (5) ◽  
pp. 275-281 ◽  
Author(s):  
Élizabeth Beauchesne ◽  
Paul Desjardins ◽  
Alan S. Hazell ◽  
Roger F. Butterworth
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Zuzana Jirsova ◽  
Marie Heczkova ◽  
Helena Dankova ◽  
Hana Malinska ◽  
Petra Videnska ◽  
...  

Butyrate produced by the intestinal microbiota is essential for proper functioning of the intestinal immune system. Total dependence on parenteral nutrition (PN) is associated with numerous adverse effects, including severe microbial dysbiosis and loss of important butyrate producers. We hypothesised that a lack of butyrate produced by the gut microbiota may be compensated by its supplementation in PN mixtures. We tested whetheri.v.butyrate administration would (a) positively modulate intestinal defence mechanisms and (b) counteract PN-induced dysbiosis. Male Wistar rats were randomised to chow, PN, and PN supplemented with 9 mM butyrate (PN+But) for 12 days. Antimicrobial peptides, mucins, tight junction proteins, and cytokine expression were assessed by RT-qPCR. T-cell subpopulations in mesenteric lymph nodes (MLN) were analysed by flow cytometry. Microbiota composition was assessed in caecum content. Butyrate supplementation resulted in increased expression of tight junction proteins (ZO-1, claudin-7, E-cadherin), antimicrobial peptides (Defa 8, Rd5, RegIIIγ), and lysozyme in the ileal mucosa. Butyrate partially alleviated PN-induced intestinal barrier impairment and normalised IL-4, IL-10, and IgA mRNA expression. PN administration was associated with an increase in Tregs in MLN, which was normalised by butyrate. Butyrate increased the total number of CD4+ and decreased a relative amount of CD8+ memory T cells in MLN. Lack of enteral nutrition and PN administration led to a shift in caecal microbiota composition. Butyrate did not reverse the altered expression of most taxa but did influence the abundance of some potentially beneficial/pathogenic genera, which might contribute to its overall beneficial effect.


2011 ◽  
Vol 463 (2) ◽  
pp. 391-398 ◽  
Author(s):  
Alexander G. Markov ◽  
Natalia M. Kruglova ◽  
Yulia A. Fomina ◽  
Michael Fromm ◽  
Salah Amasheh

2021 ◽  
Vol 17 (6) ◽  
pp. 1068-1078
Author(s):  
Fashui Hong ◽  
Xu Mu ◽  
Yuguan Ze ◽  
Wuyan Li ◽  
Yingjun Zhou ◽  
...  

Numerous studies have proven that nano titanium dioxide (nano TiO2) can accumulate in animal brains, where it damages the blood brain barrier (BBB); however, whether this process involves destruction of tight junction proteins in the mouse brain has not been adequately investigated. In this study, mice were exposed to nano TiO2 for 30 consecutive days, and then we used transmission electron microscopy to observe the BBB ultrastructure and the Evans blue assay to evaluate the permeability of the BBB. Our data suggested that nano TiO2 damaged the BBB ultrastructure and increased BBB permeability. Furthermore, we used immunofluorescence and Western blotting to examine the expression of key tight junction proteins, including Occludin, ZO-1, and Claudin-5 in the mouse brain. Our data showed that nano TiO2 reduced Occludin, ZO-1 and Claudin-5 expression. Taken together, nano TiO2-induced damage to the BBB structure and function may involve the destruction of key tight junction proteins.


2018 ◽  
Author(s):  
Z Jirsova ◽  
M Heczkova ◽  
H Dankova ◽  
H Malinska ◽  
P Videnska ◽  
...  

AbstractButyrate produced by the intestinal microbiota is essential for proper functioning of the intestinal immune system. Total dependence on parenteral nutrition (PN) is associated with numerous adverse effects, including severe microbial dysbiosis and loss of important butyrate producers. We hypothesised that a lack of butyrate produced by the gut microbiota may be compensated by its supplementation in PN mixtures. We tested whetheri.v.butyrate administration would (a) positively modulate intestinal defence mechanisms and (b) counteract PN-induced dysbiosis. Male Wistar rats were randomised to chow, PN, and PN supplemented with 9 mM butyrate (PN+But) for 12 days. Antimicrobial peptides, mucins, tight junction proteins and cytokine expression were assessed by RT-qPCR. T-cell subpopulations in mesenteric lymph nodes (MLN) were analysed by flow cytometry. Microbiota composition was assessed in caecum content. Butyrate supplementation resulted in increased expression of tight junction proteins (ZO-1, claudin-7, E-cadherin), antimicrobial peptides (Defa 8, Rd5, RegIIIγ) and lysozyme in the ileal mucosa. Butyrate partially alleviated PN-induced intestinal barrier impairment and normalised IL-4, IL-10 and IgA mRNA expression. PN administration was associated with an increase in Tregs in MLN, which was normalised by butyrate. Butyrate increased the total number of CD4+ and decreased a relative amount of CD8+ memory T cells in MLN. Lack of enteral nutrition and PN administration led to a shift in caecal microbiota composition. Butyrate did not reverse the altered expression of most taxa but did influence the abundance of some potentially beneficial/ pathogenic genera, which might contribute to its overall beneficial effect.


Sign in / Sign up

Export Citation Format

Share Document