Single cell tracing of thalamostriatal projection neurons with reference to patch and matrix compartments of rat striatum

2007 ◽  
Vol 58 ◽  
pp. S34
Author(s):  
Tomo Unzai ◽  
Fumino Fujiyama ◽  
Takeshi Kaneko
2020 ◽  
Author(s):  
Ziheng Zhou ◽  
Shuguang Wang ◽  
Dengwei Zhang ◽  
Xiaosen Jiang ◽  
Jie Li ◽  
...  

AbstractBackgroundThe specification and differentiation of neocortical projection neurons is a complex process under precise molecular regulation; however, little is known about the similarities and differences in cerebral cortex development between human and mouse at single-cell resolution.ResultsHere, using single-cell RNA-seq (scRNA-seq) data we explore the divergence and conservation of human and mouse cerebral cortex development using 18,446 and 7,610 neocortical cells. Systematic cross-species comparison reveals that the overall transcriptome profile in human cerebral cortex is similar to that in mouse such as cell types and their markers genes. By single-cell trajectories analysis we find human and mouse excitatory neurons have different developmental trajectories of neocortical projection neurons, ligand-receptor interactions and gene expression patterns. Further analysis reveals a refinement of neuron differentiation that occurred in human but not in mouse, suggesting that excitatory neurons in human undergo refined transcriptional states in later development stage. By contrast, for glial cells and inhibitory neurons we detected conserved developmental trajectories in human and mouse.ConclusionsTaken together, our study integrates scRNA-seq data of cerebral cortex development in human and mouse, and uncovers distinct developing models in neocortical projection neurons. The earlier activation of cognition -related genes in human may explain the differences in behavior, learning or memory abilities between the two species.


2021 ◽  
Author(s):  
Peibo Xu ◽  
Jian Peng ◽  
Tingli Yuan ◽  
Zhaoqin Chen ◽  
Ziyan Wu ◽  
...  

Deciphering mesoscopic connectivity of the mammalian brain is a pivotal step in neuroscience. Most imaging-based conventional neuroanatomical tracing methods identify area-to-area or sparse single neuronal labeling information. Although recently developed barcode-based connectomics has been able to map a large number of single-neuron projections efficiently, there is a missing link in single-cell connectome and transcriptome. Here, combining single-cell RNA sequencing technology, we established a retro-AAV barcode-based multiplexed tracing method called MEGRE-seq (Multiplexed projEction neuRons retroGrade barcodE), which can resolve projectome and transcriptome of source neurons simultaneously. Using the ventromedial prefrontal cortex (vmPFC) as a proof-of-concept neocortical region, we investigated projection patterns of its excitatory neurons targeting five canonical brain regions, as well as corresponding transcriptional profiles. Dedicated, bifurcated or collateral projection patterns were inferred by digital projectome. In combination with simultaneously recovered transcriptome, we find that certain projection pattern has a preferential layer or neuron subtype bias. Further, we fitted single-neuron two-modal data into a machine learning-based model and delineated gene importance by each projection target. In summary, we anticipate that the new multiplexed digital connectome technique is potential to understand the organizing principle of the neural circuit by linking projectome and transcriptome.


2017 ◽  
Author(s):  
Hongjie Li ◽  
Felix Horns ◽  
Bing Wu ◽  
Qijing Xie ◽  
Jiefu Li ◽  
...  

AbstractHow a neuronal cell type is defined and how this relates to its transcriptome are still open questions. The Drosophila olfactory projection neurons (PNs) are among the best-characterized neuronal types: Different PN classes target dendrites to distinct olfactory glomeruli and PNs of the same class exhibit indistinguishable anatomical and physiological properties. Using single-cell RNA-sequencing, we comprehensively characterized the transcriptomes of 40 PN classes and unequivocally identified transcriptomes for 6 classes. We found a new lineage-specific transcription factor that instructs PN dendrite targeting. Transcriptomes of closely-related PN classes exhibit the largest difference during circuit assembly, but become indistinguishable in adults, suggesting that neuronal subtype diversity peaks during development. Genes encoding transcription factors and cell-surface molecules are the most differentially expressed, indicating their central roles in specifying neuronal identity. Finally, we show that PNs use highly redundant combinatorial molecular codes to distinguish subtypes, enabling robust specification of cell identity and circuit assembly.


2020 ◽  
Vol 78 (5) ◽  
pp. 915-925.e7 ◽  
Author(s):  
Poonam Bheda ◽  
Diana Aguilar-Gómez ◽  
Nils B. Becker ◽  
Johannes Becker ◽  
Emmanouil Stavrou ◽  
...  
Keyword(s):  

2019 ◽  
Vol 16 (11) ◽  
pp. 1123-1130 ◽  
Author(s):  
Christoph Thiele ◽  
Klaus Wunderling ◽  
Philipp Leyendecker

2009 ◽  
Vol 113 (18) ◽  
pp. 6511-6519 ◽  
Author(s):  
Valentin Lulevich ◽  
Yi-Ping Shih ◽  
Su Hao Lo ◽  
Gang-yu Liu

2020 ◽  
Author(s):  
Kaylynn E. Coates ◽  
Steven A. Calle-Schuler ◽  
Levi M. Helmick ◽  
Victoria L. Knotts ◽  
Brennah N. Martik ◽  
...  

AbstractSerotonergic neurons modulate diverse physiological and behavioral processes in a context-dependent manner, based on their complex connectivity. However, their connectivity has not been comprehensively explored at a single-cell resolution. Using a whole-brain EM dataset we determined the wiring logic of a broadly projecting serotonergic neuron (the “CSDn”) in Drosophila. Within the antennal lobe (AL; first-order olfactory region), the CSDn receives glomerulus-specific input and preferentially targets distinct local interneuron subtypes. Furthermore, the wiring logic of the CSDn differs between olfactory regions. The CSDn innervates the AL and lateral horn (LH), yet does not maintain the same synaptic relationship with individual projection neurons that also span both regions. Consistent with this, the CSDn has more distributed connectivity in the LH relative to the AL, preferentially synapsing with principal neuron types based on presumptive transmitter content. Lastly, we identify protocerebral neurons that provide abundant synaptic input to the CSDn. Our study demonstrates how an individual modulatory neuron can interact with local networks and integrate input from non-olfactory sources.


Sign in / Sign up

Export Citation Format

Share Document