A spike sorting method with optimal feature extraction and clustering

2007 ◽  
Vol 58 ◽  
pp. S185
Author(s):  
Takashi Takekawa ◽  
Siu Kang ◽  
Yoshikazu Isomura ◽  
Tomoki Fukai

Over the last decades, digital image processing based fire and smoke detection have been improving steadily to provide a more accurate detection results in the area of surveillance security system. Detection of the fire and smoke from the surveillance videos is very challenging task due to the complex structural properties of the video frames or images and need improvisation in the existing work by utilization of feature selection or optimization approach to select on optimal feature according to the fire and smoke. A research based on the combination of various feature extraction techniques with feature selection approach for fire and smoke detection has been presented in this paper. In this research, we develop Fire and Smoke Detection (FSD) system using digital image processing with the concept of Speed up Robust Feature (SURF) along with the Intelligent Water Drops (IWD) as a feature selection and optimization algorithm. Here, Artificial Neural Network (ANN) is used as an Artificial Intelligence (AI) technique with that helps to select a set of optimal feature from the extracted by SURF descriptor from the video frames. By utilizing the concept of optimized ANN, the accuracy of proposed FSD system is increases in terms of detection accuracy and with minimum percentage of error. At last, the performance of the FSD system is calculated to validate the model and this shows that it is possible to use IWD with SURF as a feature extraction technique in order to detect the fire or smoke form the surveillance video with minimum error rate and the simulation results clearly show the effectiveness of proposed FSD system


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 478 ◽  
Author(s):  
Jiajin Qi ◽  
Xu Gao ◽  
Nantian Huang

The fault samples of high voltage circuit breakers are few, the vibration signals are complex, the existing research methods cannot extract the effective information in the features, and it is easy to overfit, slow training, and other problems. To improve the efficiency of feature extraction of a circuit breaker vibration signal and the accuracy of circuit breaker state recognition, a Light Gradient Boosting Machine (LightGBM) method based on time-domain feature extraction with multi-type entropy features for mechanical fault diagnosis of the high voltage circuit breaker is proposed. First, the original vibration signal of the high voltage circuit breaker is segmented in the time domain; then, 16 features including 5 kinds of entropy features are extracted directly from each part of the original signal after time-domain segmentation, and the original feature set is constructed. Second, the Split importance value of each feature is calculated, and the optimal feature subset is determined by the forward feature selection, taking the classification accuracy of LightGBM as the decision variable. After that, the LightGBM classifier is constructed based on the feature vector of the optimal feature subset, which can accurately distinguish the mechanical fault state of the high voltage circuit breaker. The experimental results show that the new method has the advantages of high efficiency of feature extraction and high accuracy of fault identification.


1998 ◽  
Vol 20 (2) ◽  
pp. 132-148 ◽  
Author(s):  
H.J. Huisman ◽  
J.M. Thijssen

Computer texture analysis methods use texture features that are traditionally chosen from a large set of fixed features known in literature. These fixed features are often not specifically designed to the problem at hand, and as a result they may have low discriminative power, and/or may be correlated. Increasing the number of selected fixed features is statistically not a good solution in limited data environments such as medical imaging. For that reason, we developed an adaptive texture feature extraction method (ATFE) that extracts a small number of features that are tuned to the problem at hand. By using a feed-forward neural network, we ensure that even nonlinear relations are captured from the data. Using extensive, repeated synthetic ultrasonic images, we compared the performance of ATFE with the optimal feature set. We show that the ATFE method is capable of robust operation on small data sets with a performance close to that of the optimal feature set. Another experiment confirms that our ATFE is capable of capturing nonlinear relations from the dataset. We conclude that our method can improve performance in practical, limited dataset situations where an optimal fixed feature set can be hard to find.


Sign in / Sign up

Export Citation Format

Share Document