High level over-expression of different NCX isoforms in HEK293 cell lines and primary neuronal cultures is protective following oxygen glucose deprivation

2012 ◽  
Vol 73 (3) ◽  
pp. 191-198 ◽  
Author(s):  
Jane L. Cross ◽  
Sherif Boulos ◽  
Kate L. Shepherd ◽  
Amanda J. Craig ◽  
Sharon Lee ◽  
...  
PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e63206 ◽  
Author(s):  
Edina A. Wappler ◽  
Adam Institoris ◽  
Somhrita Dutta ◽  
Prasad V. G. Katakam ◽  
David W. Busija

2020 ◽  
Author(s):  
Cécile Ferré ◽  
Anne Thouard ◽  
Alexandre Bétourné ◽  
Pascale Belenguer ◽  
Marie-Christine Miquel ◽  
...  

Abstract Mortalin is a mitochondrial chaperone protein involved in quality control of proteins imported into the mitochondrial matrix, which was recently described as a sensor of neuronal stress. Mortalin is down-regulated in neurons of patients with neurodegenerative diseases and levels of Mortalin expression are correlated with neuronal fate in animal models of Alzheimer's disease or cerebral ischemia. To date, however, the links between Mortalin levels, its impact on mitochondrial function and morphology and, ultimately, the initiation of neurodegeneration, are still unclear. In the present study, we used lentiviral vectors to over- or under-express Mortalin in primary neuronal cultures. We first analyzed the early events of neurodegeneration in the axonal compartment, using oriented neuronal cultures grown in microfluidic-based devices. We observed that Mortalin down-regulation induced mitochondrial fragmentation and axonal damage, whereas its over-expression conferred protection against axonal degeneration mediated by oxidative stress. We next demonstrated that Mortalin levels modulated mitochondrial morphology by a direct action on DRP1 phosphorylation, thereby further illustrating the crucial implication of mitochondrial dynamics on neuronal fate in degenerative diseases.


1975 ◽  
Vol 65 (3) ◽  
pp. 562-576 ◽  
Author(s):  
A C Breuer ◽  
C N Christian ◽  
M Henkart ◽  
P G Nelson

Organelle translocation in a number of cell types in tissue culture as seen by high-resolution Zeiss-Nomarski differential interference contrast optics was filmed and analyzed by computer. Principal cell types studied included primary chick spinal cord, chick dorsal root ganglion, ratbrain, and various clones of continuous cell lines. Organelle translocations in all cell types studied exhibited frequent, large changes in velocity during any one translocation. The appearance of particles as seen with Nomarski optics was correlated with their fine structures in one dorsal root ganglion neurite by fixing the cell as it was being filmed and obtaining electron micrographs of the region filmed. This revealed the identity of several organelles as well as the presence of abundant neurotubules but no neurofilaments. Primary cell cultures exhibited more high-velocity organelle movements than continuous cell lines. The net progress of an organelle in a given direction was greater in primary neuronal cells than in fibroblasts or continuous cell lines. These findings are correlated with the literature on organelle translocation and axoplasmic transport.


2009 ◽  
Vol 296 (1) ◽  
pp. C97-C105 ◽  
Author(s):  
Ferenc Domoki ◽  
Béla Kis ◽  
Tamás Gáspár ◽  
James A. Snipes ◽  
John S. Parks ◽  
...  

We tested whether rosuvastatin (RST) protected against oxygen-glucose deprivation (OGD)-induced cell death in primary rat cortical neuronal cultures. OGD reduced neuronal viability (%naive controls, mean ± SE, n = 24–96, P < 0.05) to 44 ± 1%, but 3-day pretreatment with RST (5 μM) increased survival to 82 ± 2% ( P < 0.05). One-day RST treatment was not protective. RST-induced neuroprotection was abolished by mevalonate or geranylgeranyl pyrophosphate (GGPP), but not by cholesterol coapplication. Furthermore, RST-induced decreases in neuronal cholesterol levels were abolished by mevalonate but not by GGPP. Reactive oxygen species (ROS) levels were reduced in RST-preconditioned neurons after OGD, and this effect was also reversed by both mevalonate and GGPP. These data suggested that GGPP, but not cholesterol depletion, were responsible for the induction of neuroprotection. Therefore, we tested whether 3-day treatments with perillic acid, a nonspecific inhibitor of both geranylgeranyl transferase (GGT) GGT 1 and Rab GGT, and the GGT 1-specific inhibitor GGTI-286 would reproduce the effects of RST. Perillic acid, but not GGTI-286, elicited robust neuronal preconditioning against OGD. RST, GGTI-286, and perillic acid all decreased mitochondrial membrane potential and lactate dehydrogenase activity in the cultured neurons, but only RST and perillic acid reduced neuronal ATP and membrane Rab3a protein levels. In conclusion, RST preconditions cultured neurons against OGD via depletion of GGPP, leading to decreased geranylgeranylation of proteins that are probably not isoprenylated by GGT 1. Reduced neuronal ATP levels and ROS production after OGD may be directly involved in the mechanism of neuroprotection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cécile A. Ferré ◽  
Anne Thouard ◽  
Alexandre Bétourné ◽  
Anne-Louise Le Dorze ◽  
Pascale Belenguer ◽  
...  

AbstractMortalin is a mitochondrial chaperone protein involved in quality control of proteins imported into the mitochondrial matrix, which was recently described as a sensor of neuronal stress. Mortalin is down-regulated in neurons of patients with neurodegenerative diseases and levels of Mortalin expression are correlated with neuronal fate in animal models of Alzheimer's disease or cerebral ischemia. To date, however, the links between Mortalin levels, its impact on mitochondrial function and morphology and, ultimately, the initiation of neurodegeneration, are still unclear. In the present study, we used lentiviral vectors to over- or under-express Mortalin in primary neuronal cultures. We first analyzed the early events of neurodegeneration in the axonal compartment, using oriented neuronal cultures grown in microfluidic-based devices. We observed that Mortalin down-regulation induced mitochondrial fragmentation and axonal damage, whereas its over-expression conferred protection against axonal degeneration mediated by rotenone exposure. We next demonstrated that Mortalin levels modulated mitochondrial morphology by acting on DRP1 phosphorylation, thereby further illustrating the crucial implication of mitochondrial dynamics on neuronal fate in degenerative diseases.


2003 ◽  
Vol 23 (10) ◽  
pp. 1137-1150 ◽  
Author(s):  
Guodong Cao ◽  
Robert S B Clark ◽  
Wei Pei ◽  
Wei Yin ◽  
Feng Zhang ◽  
...  

Loss of mitochondrial membrane integrity and the resulting release of apoptogenic factors may play a critical role in mediating hippocampal neurodegeneration after transient global ischemia. In the present study, the authors have cloned and characterized the rat cDNA encoding apoptosis-inducing factor (AIF), an intramitochondrial protein that promotes cell death in a caspase-independent manner upon release into nonmitochondrial compartments. In contrast to the expression patterns of a number of apoptosis-regulatory gene products during brain development, the expression of AIF protein increases gradually with brain maturation and peaks in adulthood. In a rat model of transient global ischemia, AIF was found to translocate from mitochondria to the nucleus in the hippocampal CA1 neurons after ischemia and to manifest a DNA-degrading activity that mimicked the purified AIF protein and was inhibitable by AIF immunodepletion. The temporal profile of AIF translocation after ischemia (24 to 72 hours) coincided with the induction of large-scale DNA fragmentation at the size of 50 kbp, a well-characterized hallmark of AIF-like activity but preceded the formation of internucleosomal DNA fragmentation (72 hours), a DNA degradation associated with the terminal stage of cell death. Further, the nuclear translocation of AIF after ischemia was not blocked by inhibiting caspase-3/-7 activities, but, as shown in neuronal cultures that were challenged with transient oxygen-glucose deprivation, it can be prevented by intracellular delivery of the mitochondria-associated antiapoptotic protein Bcl-xL. The results presented here strongly suggest that mitochondrial release of AIF may be an important factor, in addition to the previously reported cytochrome c and Smac, which could contribute to the selective vulnerability of CA1 neurons to transient global ischemic injury.


2004 ◽  
Vol 200 (2) ◽  
pp. 211-222 ◽  
Author(s):  
Irina G. Stavrovskaya ◽  
Malini V. Narayanan ◽  
Wenhua Zhang ◽  
Boris F. Krasnikov ◽  
Jill Heemskerk ◽  
...  

Substantial evidence indicates that mitochondria are a major checkpoint in several pathways leading to neuronal cell death, but discerning critical propagation stages from downstream consequences has been difficult. The mitochondrial permeability transition (mPT) may be critical in stroke-related injury. To address this hypothesis, identify potential therapeutics, and screen for new uses for established drugs with known toxicity, 1,040 FDA-approved drugs and other bioactive compounds were tested as potential mPT inhibitors. We report the identification of 28 structurally related drugs, including tricyclic antidepressants and antipsychotics, capable of delaying the mPT. Clinically achievable doses of one drug in this general structural class that inhibits mPT, promethazine, were protective in both in vitro and mouse models of stroke. Specifically, promethazine protected primary neuronal cultures subjected to oxygen-glucose deprivation and reduced infarct size and neurological impairment in mice subjected to middle cerebral artery occlusion/reperfusion. These results, in conjunction with new insights provided to older studies, (a) suggest a class of safe, tolerable drugs for stroke and neurodegeneration; (b) provide new tools for understanding mitochondrial roles in neuronal cell death; (c) demonstrate the clinical/experimental value of screening collections of bioactive compounds enriched in clinically available agents; and (d) provide discovery-based evidence that mPT is an essential, causative event in stroke-related injury.


Sign in / Sign up

Export Citation Format

Share Document