scholarly journals Perivascular Hedgehog responsive cells play a critical role in peripheral nerve regeneration via controlling angiogenesis

Author(s):  
Yurie Yamada ◽  
Jun Nihara ◽  
Supaluk Trakanant ◽  
Takehisa Kudo ◽  
Kenji Seo ◽  
...  
2018 ◽  
Vol 32 (9) ◽  
pp. 765-776 ◽  
Author(s):  
Liming Qing ◽  
Huanwen Chen ◽  
Juyu Tang ◽  
Xiaofeng Jia

Peripheral nerve injury is a major clinical problem and often results in a poor functional recovery. Despite obvious clinical need, treatment strategies have been largely suboptimal. In the nervous system, exosomes, which are nanosized extracellular vesicles, play a critical role in mediating intercellular communication. More specifically, microRNA carried by exosomes are involved in various key processes such as nerve and vascular regeneration, and exosomes originating from Schwann cells, macrophages, and mesenchymal stem cells can promote peripheral nerve regeneration. In this review, the current knowledge of exosomes’ and their miRNA cargo’s role in peripheral nerve regeneration are summarized. The possible future roles of exosomes in therapy and the potential for microRNA-containing exosomes to treat peripheral nerve injuries are also discussed.


2021 ◽  
Vol 22 (9) ◽  
pp. 4821
Author(s):  
Zhenyuan Xu ◽  
Jacob A. Orkwis ◽  
Greg M. Harris

Schwann cells (SCs) are a highly plastic cell type capable of undergoing phenotypic changes following injury or disease. SCs are able to upregulate genes associated with nerve regeneration and ultimately achieve functional recovery. During the regeneration process, the extracellular matrix (ECM) and cell morphology play a cooperative, critical role in regulating SCs, and therefore highly impact nerve regeneration outcomes. However, the roles of the ECM and mechanotransduction relating to SC phenotype are largely unknown. Here, we describe the role that matrix stiffness and cell morphology play in SC phenotype specification via known mechanotransducers YAP/TAZ and RhoA. Using engineered microenvironments to precisely control ECM stiffness, cell shape, and cell spreading, we show that ECM stiffness and SC spreading downregulated SC regenerative associated proteins by the activation of RhoA and YAP/TAZ. Additionally, cell elongation promoted a distinct SC regenerative capacity by the upregulation of Rac1/MKK7/JNK, both necessary for the ECM and morphology changes found during nerve regeneration. These results confirm the role of ECM signaling in peripheral nerve regeneration as well as provide insight to the design of future biomaterials and cellular therapies for peripheral nerve regeneration.


2017 ◽  
Author(s):  
M. Karagyaur ◽  
P. Makarevich ◽  
E. Shevchenko ◽  
D. Stambolsky ◽  
N. Kalinina ◽  
...  

2005 ◽  
Vol 6 (4) ◽  
pp. 385-394 ◽  
Author(s):  
Hidenori Horie ◽  
Toshihiko Kadoya ◽  
Kazunori Sango ◽  
Mitsuhiro Hasegawa

BIO-PROTOCOL ◽  
2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Hyukmin Kim ◽  
Harun Noristani ◽  
Seung Han ◽  
Young-Jin Son

Sign in / Sign up

Export Citation Format

Share Document