Prolonged ethanol exposure alters glutamate uptake leading to astrogliosis and neuroinflammation in adult zebrafish brain

2021 ◽  
Author(s):  
Adriana Fernanda Kuckartz Vizuete ◽  
Ben Hur Mussulini ◽  
Kamila Cagliari Zenki ◽  
Suelen Baggio ◽  
Amanda Pasqualotto ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 637
Author(s):  
Nicholas S. Moore ◽  
Robert A. Mans ◽  
Mackenzee K. McCauley ◽  
Colton S. Allgood ◽  
Keri A. Barksdale

Evidence from human and animal studies indicate that disrupted light cycles leads to alterations of the sleep state, poor cognition, and the risk of developing neuroinflammatory and generalized health disorders. Zebrafish exhibit a diurnal circadian rhythm and are an increasingly popular model in studies of neurophysiology and neuropathophysiology. Here, we investigate the effect of alterations in light cycle on the adult zebrafish brain: we measured the effect of altered, unpredictable light exposure in adult zebrafish telencephalon, homologous to mammalian hippocampus, and the optic tectum, a significant visual processing center with extensive telencephalon connections. The expression of heat shock protein-70 (HSP70), an important cell stress mediator, was significantly decreased in optic tectum of adult zebrafish brain following four days of altered light exposure. Further, pSer473-Akt (protein kinase B) was significantly reduced in telencephalon following light cycle alteration, and pSer9-GSK3β (glycogen synthase kinase-3β) was significantly reduced in both the telencephalon and optic tectum of light-altered fish. Animals exposed to five minutes of environmental enrichment showed significant increase in pSer473Akt, which was significantly attenuated by four days of altered light exposure. These data show for the first time that unpredictable light exposure alters HSP70 expression and dysregulates Akt-GSK3β signaling in the adult zebrafish brain.


2021 ◽  
Author(s):  
Surendra Kumar Anand ◽  
Manas Ranjan Sahu ◽  
Amal Chandra Mondal

Abstract In the recent years, zebrafish, owing to its tremendous adult neurogenic capacity, has emerged as a useful vertebrate model to study brain regeneration. Recent findings suggest a significant role of the BDNF/TrkB signaling as a mediator of brain regeneration following a stab injury in the adult zebrafish brain. Since BDNF has been implicated in a plethora of physiological processes, we hypothesized that these processes are affected in the injured zebrafish brain. In this small study, we examined the indicators of oxidative stress and of apoptosis using biochemical assays, RT-PCR and IHC to reflect upon the impact of stab injury on oxidative stress levels and apoptosis in the injured adult zebafish brain. Our results indicate induction of oxidative stress in the injured adult zebrafish brain. Also, apoptosis was induced in the injured brain as indicated by increased protein levels of cleaved caspase3 as well as enhanced mRNA levels of both pro-apoptotic and anti-apoptotic genes. This knowledge contributes to the overall understanding of adult neurogenesis in the zebrafish model and raises new questions pertaining to the compensatory physiological mechanisms in response to traumatic brain injury in the adult zebrafish brain.


Sign in / Sign up

Export Citation Format

Share Document