scholarly journals Induction of Oxidative Stress and Apoptosis in the Injured Brain: Potential Relevance to Brain Regeneration in Zebrafish.

Author(s):  
Surendra Kumar Anand ◽  
Manas Ranjan Sahu ◽  
Amal Chandra Mondal

Abstract In the recent years, zebrafish, owing to its tremendous adult neurogenic capacity, has emerged as a useful vertebrate model to study brain regeneration. Recent findings suggest a significant role of the BDNF/TrkB signaling as a mediator of brain regeneration following a stab injury in the adult zebrafish brain. Since BDNF has been implicated in a plethora of physiological processes, we hypothesized that these processes are affected in the injured zebrafish brain. In this small study, we examined the indicators of oxidative stress and of apoptosis using biochemical assays, RT-PCR and IHC to reflect upon the impact of stab injury on oxidative stress levels and apoptosis in the injured adult zebafish brain. Our results indicate induction of oxidative stress in the injured adult zebrafish brain. Also, apoptosis was induced in the injured brain as indicated by increased protein levels of cleaved caspase3 as well as enhanced mRNA levels of both pro-apoptotic and anti-apoptotic genes. This knowledge contributes to the overall understanding of adult neurogenesis in the zebrafish model and raises new questions pertaining to the compensatory physiological mechanisms in response to traumatic brain injury in the adult zebrafish brain.

2021 ◽  
Vol 22 (3) ◽  
pp. 1478
Author(s):  
Jiayin Lu ◽  
Yaoxing Chen ◽  
Zixu Wang ◽  
Jing Cao ◽  
Yulan Dong

Restraint stress causes various maternal diseases during pregnancy. β2-Adrenergic receptor (β2-AR) and Forkhead transcription factor class O 1 (FOXO1) are critical factors not only in stress, but also in reproduction. However, the role of FOXO1 in restraint stress, causing changes in the β2-AR pathway in pregnant mice, has been unclear. The aim of this research was to investigate the β2-AR pathway of restraint stress and its impact on the oxidative stress of the maternal uterus. In the study, maternal mice were treated with restraint stress by being restrained in a transparent and ventilated device before sacrifice on Pregnancy Day 5 (P5), Pregnancy Day 10 (P10), Pregnancy Day 15 (P15), and Pregnancy Day 20 (P20) as well as on Non-Pregnancy Day 5 (NP5). Restraint stress augmented blood corticosterone (CORT), norepinephrine (NE), and blood glucose levels, while oestradiol (E2) levels decreased. Moreover, restraint stress increased the mRNA levels of the FOXO family, β2-AR, and even the protein levels of FOXO1 and β2-AR in the uterus and ovaries. Furthermore, restraint stress increased uterine oxidative stress level. In vitro, the protein levels of FOXO1 were also obviously increased when β2-AR was activated in endometrial stromal cells (ESCs). In addition, phosphorylated-nuclear factor kappa-B p65 (p-NF-κB p65) and its target genes decreased significantly when FOXO1 was inhibited. Overall, it can be said that the β2-AR/FOXO1/p-NF-κB p65 pathway was activated when pregnant mice were under restraint stress. This study provides a scientific basis for the origin of psychological stress in pregnant women.


2018 ◽  
Vol 19 (10) ◽  
pp. 3195 ◽  
Author(s):  
Sreeja Sarasamma ◽  
Gilbert Audira ◽  
Stevhen Juniardi ◽  
Bonifasius Sampurna ◽  
Sung-Tzu Liang ◽  
...  

In this study, we evaluated the acute (24, 48, 72, and 96 h) and chronic (21 days) adverse effects induced by low doses (0.1, 0.5, 1, and 1.5 mg/L) of zinc chloride (ZnCl2) exposure in adult zebrafish by using behavioral endpoints like three-dimensional (3D) locomotion, passive avoidance, aggression, circadian rhythm, and predator avoidance tests. Also, brain tissues were dissected and subjected to analysis of multiple parameters related to oxidative stress, antioxidant responses, superoxide dismutase (SOD), neurotoxicity, and neurotransmitters. The results showed that ZnCl2-exposed fishes displayed decreased locomotor behavior and impaired short-term memory, which caused an Alzheimer’s Disease (AD)-like syndrome. In addition, low concentrations of ZnCl2 induced amyloid beta (amyloid β) and phosphorylated Tau (p-Tau) protein levels in brains. In addition, significant induction in oxidative stress indices (reactive oxygen species (ROS) and malondialdehyde (MDA)), reduction in antioxidant defense system (glutathione (GSH), GSH peroxidase (GSH-Px) and SOD) and changes in neurotransmitters were observed at low concentrations of ZnCl2. Neurotoxic effects of ZnCl2 were observed with significant inhibition of acetylcholine (ACh) activity when the exposure dose was higher than 1 ppm. Furthermore, we found that zinc, metallothionein (MT), and cortisol levels in brain were elevated compared to the control group. A significantly negative correlation was observed between memory and acetylcholinesterase (AChE) activity. In summary, these findings revealed that exposure to ZnCl2 affected the behavior profile of zebrafish, and induced neurotoxicity which may be associated with damaged brain areas related to memory. Moreover, our ZnCl2-induced zebrafish model may have potential for AD-associated research in the future.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5136 ◽  
Author(s):  
Matheus Marcon ◽  
Ricieri Mocelin ◽  
Adrieli Sachett ◽  
Anna M. Siebel ◽  
Ana P. Herrmann ◽  
...  

Background The enriched environment (EE) is a laboratory housing model that emerged from efforts to minimize the impact of environmental conditions on laboratory animals. Recently, we showed that EE promoted positive effects on behavior and cortisol levels in zebrafish submitted to the unpredictable chronic stress (UCS) protocol. Here, we expanded the characterization of the effects of UCS protocol by assessing parameters of oxidative status in the zebrafish brain and reveal that EE protects against the oxidative stress induced by chronic stress. Methods Zebrafish were exposed to EE (21 or 28 days) or standard housing conditions and subjected to the UCS protocol for seven days. Oxidative stress parameters (lipid peroxidation (TBARS), reactive oxygen species (ROS) levels, non-protein thiol (NPSH) and total thiol (SH) levels, superoxide dismutase (SOD) and catalase (CAT) activities were measured in brain homogenate. Results Our results revealed that UCS increased lipid peroxidation and ROS levels, while decreased NPSH levels and SOD activity, suggesting oxidative damage. EE for 28 days prevented all changes induced by the UCS protocol, and EE for 21 days prevented the alterations on NPSH levels, lipid peroxidation and ROS levels. Both EE for 21 or 28 days increased CAT activity. Discussion Our findings reinforce the idea that EE exerts neuromodulatory effects in the zebrafish brain. EE promoted positive effects as it helped maintain the redox homeostasis, which may reduce the susceptibility to stress and its oxidative impact.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Chunlei Li ◽  
Qi Shi ◽  
Yue Yan ◽  
Yanhua Kong ◽  
YanYan Meng ◽  
...  

Purpose/Objective. To evaluate the effects of Recuperating Lung Decoction (RLD) on the indices of oxidative stress in a rat model of COPD and detect the indices of the MAPK/AP-1/γ-GCS signal pathway for a further survey of the possible targeting site of RLD. Methods/Materials. The rats of COPD were treated with RLD. The protein levels of glutathione (GSH), oxidized glutathione (GSSG), 8-hydroxy-2-deoxyguanosine (8-OHdG), and 4-hydroxynonenal (4-HNE) were measured. In addition, the levels of key signaling molecules (extracellular signal-regulated kinases [ERK], the c-jun N-terminal kinase [JNKs signal pathway], and p38 MAP kinase [p38MAPK], AP-1 proteins [C-fos, C-jun], and γ-glutamyl-cysteine synthetase [γ-GCS-h]) of the MAPK/AP-1/γ-GCS-h signal pathway were assessed. Results. After treatment, the protein level of GSH and the ratio of GSH/GSSG were increased and the amounts of 8-OHdG and 4-HNE were decreased significantly in lung tissues when compared with the nontreated COPD group. Further results showed that the RLD could effectively inhibit the MAPK pathway by inactivation of p38MAPK and ERK and could also downregulate the AP-1 and the γ-GCS-h genes expressions in both protein and mRNA levels. Conclusion. RLD might improve the state of oxidative stress by downregulation of the expression of γ-GCS-h gene by inhibition of the MAPK/AP-1 pathway, thereafter enhancing the ability of antioxidation in COPD.


2007 ◽  
Vol 282 (46) ◽  
pp. 33466-33474 ◽  
Author(s):  
Sarah Chouinard ◽  
Olivier Barbier ◽  
Alain Bélanger

Uridine diphosphate-glucuronosyltransferase 2 (UGT2)B15 and B17 enzymes conjugate dihydrotestosterone (DHT) and its metabolites androstane-3α, 17β-diol (3α-DIOL) and androsterone (ADT). The presence of UGT2B15/B17 in the epithelial cells of the human prostate has been clearly demonstrated, and significant 3α-DIOL glucuronide and ADT-glucuronide concentrations have been detected in this tissue. The human androgen-dependent cancer cell line, LNCaP, expresses UGT2B15 and -B17 and is also capable of conjugating androgens. To assess the impact of these two genes in the inactivation of androgens in LNCaP cells, their expression was inhibited using RNA interference. The efficient inhibitory effects of a UGT2B15/B17 small interfering RNA (siRNA) probe was established by the 70% reduction of these UGT mRNA levels, which was further confirmed at the protein levels. The glucuronidation of dihydrotestosterone (DHT), 3α-DIOL, and ADT by LNCaP cell homogenates was reduced by more than 75% in UGT2B15/B17 siRNA-transfected LNCaP cells when compared with cells transfected with a non-target probe. In UGT2B15/B17-deficient LNCaP cells, we observe a stronger response to DHT than in control cells, as determined by cell proliferation and expression of eight known androgen-sensitive genes. As expected, the amounts of DHT in cell culture media from control cells were significantly lower than that from UGT2B15/B17 siRNA-treated cells, which was caused by a higher conversion to its corresponding glucuronide derivative. Taken together these data support the idea that UGT2B15 and -B17 are critical enzymes for the local inactivation of androgens and that glucuronidation is a major determinant of androgen action in prostate cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2737-2737
Author(s):  
Richard A. Wells ◽  
Chunhong Gu ◽  
Joelle dela Paz

Abstract Abstract 2737 Poster Board II-713 Background Although patients with acute myelogenous leukaemia (AML) typically respond well to initial therapy, with over 75% of patients achieving complete remission, in the great majority the disease ultimately relapses. This is thought to be due to the inherent resistance of leukaemia stem cells to the effects of chemotherapy. While some mechanisms of chemoresistance, e.g. TP53 mutation and upregulation of P-glycoprotein expression, have been well characterized, this phenomenon remains incompletely understood and is a significant barrier to improving patient outcomes. Methods and results The thiazolidindione drug troglitazone (TG) induces apoptosis in AML cells via generation of intracellular reactive oxygen species (ROS), but the degree of sensitivity to TG is highly heterogeneous among AML cell lines. We studied expression of the transcription factor ARNT (aryl hydrocarbon nuclear translocator) in TG-sensitive and TG-resistant AML cell lines following TG treatment. In HL-60 cells, which are highly sensitive to induction of apoptosis by TG, ARNT mRNA levels remained constant following TG treatment and ARNT protein levels markedly decreased, while in U937 cells, which are TG resistant, ARNT mRNA levels increased and ARNT protein levels remained constant. We then tested the effect of exogenous expression of ARNT on the sensitivity of HL-60 cells to TG-induced apoptosis. HL-60 cells transduced with a retrovirus expressing ARNT became TG-resistant. Exogenous expression of ARNT also conferred resistance to induction of apoptosis by hydrogen peroxide, daunorubicin and etoposide. The cellular response to oxidative stress is governed by intracellular signaling pathways and through a transcriptional response through which expression of antioxidant genes is coordinated. HL-60 cells expressing ARNT had striking constitutive activation of AKT signaling, and treatment of these cells with a specific inhibitor of AKT signaling reversed their resistance to TG-induced apoptosis. The activation of AKT signaling by ARNT appears to be mediated by downregulation of expression of PP2A and alpha4, two key negative regulators of AKT phosphorylation. In addition, ARNT-transduced HL-60 cells showed increased expression of Nrf2, a key transcriptional regulator of the antioxidant response, and its target genes SOD2 and CAT. Conclusions The response to oxidative stress is heterogeneous in AML cells lines, and varies with expression of ARNT. ARNT activates expression of Nrf2, which stimulates expression of antioxidant genes resulting in an augmented adaptive response to ROS. Unexpectedly, ARNT also activates AKT signaling by repressing expression of the regulatory phosphatases PP2A and alpha4. These activities of ARNT result in increased resistance to the induction of apoptosis by TG, hydrogen peroxide, and chemotherapy. ARNT may play an important role in chemoresistance in and may be useful as a predictive or prognostic biomarker. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 300 (5) ◽  
pp. R1152-R1162 ◽  
Author(s):  
Ioanna Sigala ◽  
Panayiotis Zacharatos ◽  
Dimitris Toumpanakis ◽  
Tatiana Michailidou ◽  
Olga Noussia ◽  
...  

Inspiratory resistive breathing (IRB) induces cytokine expression in the diaphragm. The mechanism of this cytokine induction remains elusive. The roles of MAPKs and NF-κB and the impact of oxidative stress in IRB-induced cytokine upregulation in the diaphragm were studied. Wistar rats were subjected to IRB (50% of maximal inspiratory pressure) via a two-way nonrebreathing valve for 1, 3, or 6 h. Additional groups of rats subjected to IRB for 6 h were randomly assigned to receive either solvent or N-acetyl-cysteine (NAC) or inhibitors of NF-κB (BAY-11–7082), ERK1/2 (PD98059), and P38 MAPK (SB203580) to study the effect of oxidative stress, NF-κB, and MAPKs in IRB-induced cytokine upregulation in the diaphragm. Quietly breathing animals served as controls. IRB upregulated cytokine (IL-6, TNF-α, IL-10, IL-2, IL-1β) protein levels in the diaphragm and resulted in increased activation of MAPKs (P38, ERK1/2) and NF-κB. Inhibition of NF-κB and ERK1/2 blunted the upregulation of all cytokines except that of IL-6, which was further increased. P38 inhibition attenuated all cytokine (including IL-6) upregulation. Both P38 and ERK1/2 inhibition decreased NF-κB/p65 subunit phosphorylation. NAC pretreatment blunted IRB-induced cytokine upregulation in the diaphragm and resulted in decreased ERK1/2, P38, and NF-κB/p65 phosphorylation. In conclusion, IRB-induced cytokine upregulation in the diaphragm is under the regulatory control of MAPKs and NF-κB. IL-6 is regulated differently from all other cytokines through a P38-dependent and NF-κB independent pathway. Oxidative stress is a stimulus for IRB-induced cytokine upregulation in the diaphragm.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2346
Author(s):  
Aline Yammine ◽  
Amira Zarrouk ◽  
Thomas Nury ◽  
Anne Vejux ◽  
Norbert Latruffe ◽  
...  

The Mediterranean diet is associated with health benefits due to bioactive compounds such as polyphenols. The biological activities of three polyphenols (quercetin (QCT), resveratrol (RSV), apigenin (API)) were evaluated in mouse neuronal N2a cells in the presence of 7-ketocholesterol (7KC), a major cholesterol oxidation product increased in patients with age-related diseases, including neurodegenerative disorders. In N2a cells, 7KC (50 µM; 48 h) induces cytotoxic effects characterized by an induction of cell death. When associated with RSV, QCT and API (3.125; 6.25 µM), 7KC-induced toxicity was reduced. The ability of QCT, RSV and API to prevent 7KC-induced oxidative stress was characterized by a decrease in reactive oxygen species (ROS) production in whole cells and at the mitochondrial level; by an attenuation of the increase in the level and activity of catalase; by attenuating the decrease in the expression, level and activity of glutathione peroxidase 1 (GPx1); by normalizing the expression, level and activity of superoxide dismutases 1 and 2 (SOD1, SOD2); and by reducing the decrease in the expression of nuclear erythroid 2-like factor 2 (Nrf2) which regulates antioxidant genes. QCT, RSV and API also prevented mitochondrial dysfunction in 7KC-treated cells by counteracting the loss of mitochondrial membrane potential (ΨΔm) and attenuating the decreased gene expression and/or protein level of AMP-activated protein kinase α (AMPKα), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) implicated in mitochondrial biogenesis. At the peroxisomal level, QCT, RSV and API prevented the impact of 7KC by counteracting the decrease in ATP binding cassette subfamily D member (ABCD)3 (a peroxisomal mass marker) at the protein and mRNA levels, as well as the decreased expresssion of genes associated with peroxisomal biogenesis (Pex13, Pex14) and peroxisomal β-oxidation (Abcd1, Acox1, Mfp2, Thiolase A). The 7KC-induced decrease in ABCD1 and multifunctional enzyme type 2 (MFP2), two proteins involved in peroxisomal β-oxidation, was also attenuated by RSV, QCT and API. 7KC-induced cell death, which has characteristics of apoptosis (cells with fragmented and/or condensed nuclei; cleaved caspase-3; Poly(ADP-ribose) polymerase (PARP) fragmentation) and autophagy (cells with monodansyl cadaverine positive vacuoles; activation of microtubule associated protein 1 light chain 3–I (LC3-I) to LC3-II, was also strongly attenuated by RSV, QCT and API. Thus, in N2a cells, 7KC induces a mode of cell death by oxiapoptophagy, including criteria of OXIdative stress, APOPTOsis and autoPHAGY, associated with mitochondrial and peroxisomal dysfunction, which is counteracted by RSV, QCT, and API reinforcing the interest for these polyphenols in prevention of diseases associated with increased 7KC levels.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Izabela Szulc-Kielbik ◽  
Michal Kielbik ◽  
Patrycja Przygodzka ◽  
Anna Brzostek ◽  
Jaroslaw Dziadek ◽  
...  

This study tested the hypothesis that Mycobacterium tuberculosis (Mtb) uses a cholesterol oxidase enzyme (ChoD) to suppress a toll-like receptor type 2- (TLR2-) dependent signalling pathway to modulate macrophages’ immune response. We investigated the impact of Mtb possessing or lacking ChoD as well as TBChoD recombinant protein obtained from Mtb on the expression and activation of two key intracellular proteins involved in TLR2 signalling in human macrophages. Finally, the involvement of TLR2-related signalling proteins in an inflammatory/immunosuppressive response of macrophages to Mtb was evaluated. We demonstrate that wild-type Mtb but not the ∆choD mutant decreased the cytosolic IRAK4 and TRAF6 protein levels while strongly enhancing IRAK4 and TRAF6 mRNA levels in macrophages. Our data show that the TLR2 present on the surface of macrophages are involved in disturbing the signalling pathway by wild-type Mtb. Moreover, recombinant TBChoD effectively decreased the cytosolic level of TRAF6 and lowered the phosphorylation of IRAK4, which strongly confirm an involvement of cholesterol oxidase in affecting the TLR2-related pathway by Mtb. Wild-type Mtb induced an immunosuppressive response of macrophages in an IRAK4- and TRAF6-dependent manner as measured by interleukin 10 production. In conclusion, ChoD is a virulence factor that enables Mtb to disturb the TLR2-related signalling pathway in macrophages and modulate their response.


2001 ◽  
Vol 114 (12) ◽  
pp. 2335-2344 ◽  
Author(s):  
Celia Jiménez-Cervantes ◽  
María Martínez-Esparza ◽  
Cristina Pérez ◽  
Nicole Daum ◽  
Francisco Solano ◽  
...  

H2O2 and other reactive oxygen species are key regulators of many intracellular pathways. Within mammalian skin, H2O2 is formed as a byproduct of melanin synthesis, and following u.v. irradiation. We therefore analyzed its effects on melanin synthesis. The activity of the rate-limiting melanogenic enzyme, tyrosinase, decreased in H2O2-treated mouse and human melanoma cells. This inhibition was concentration- and time-dependent in the B16 melanoma model. Maximal inhibition (50-75%) occurred 8-16 hours after a 20 minute exposure to 0.5 mM H2O2. B16 cells withstand this treatment adequately, as shown by a small effect on glutathione levels and a rapid recovery of basal lipid peroxidation levels. Enzyme activities also recovered, beginning to increase 16-20 hours after the treatment. Inhibition of enzyme activities reflected decreased protein levels. mRNAs for tyrosinase, tyrosinase-related protein 1, dopachrome tautomerase, silver protein and melanocortin 1 receptor also decreased after H2O2 treatment, and recovered at different rates. Downregulation of melanocyte differentiation markers mRNAs was preceded by a decrease in microphthalmia transcription factor (Mitf) gene expression, which was quantitatively similar to the decrease achieved using 12-O-tetradecanoylphorbol-13-acetate. Recovery of basal Mitf mRNA levels was also observed clearly before that of tyrosinase. Therefore, oxidative stress may lead to hypopigmentation by mechanisms that include a microphthalmia-dependent downregulation of the melanogenic enzymes.


Sign in / Sign up

Export Citation Format

Share Document