Alpha-synuclein aggregation and synaptic pathology in Parkinson’s disease and Dementia with Lewy Bodies

2016 ◽  
Vol 39 ◽  
pp. S4 ◽  
Author(s):  
Leonidas Stefanis
2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Peng Wang ◽  
Xin Li ◽  
Xuran Li ◽  
Weiwei Yang ◽  
Shun Yu

A pathological hallmark of Parkinson’s disease (PD) is formation of Lewy bodies in neurons of the brain. This has been attributed to the spread of α-synuclein (α-syn) aggregates, which involves release of α-syn from a neuron and its reuptake by a neighboring neuron. We found that treatment with plasma from PD patients induced more α-syn phosphorylation and oligomerization than plasma from normal subjects (NS). Compared with NS plasma, PD plasma added to primary neuron cultures caused more cell death in the presence of extracellular α-syn. This was supported by the observations that phosphorylated α-syn oligomers entered neurons, rapidly increased accumulated thioflavin S-positive inclusions, and induced a series of metabolic changes that included activation of polo-like kinase 2, inhibition of glucocerebrosidase and protein phosphatase 2A, and reduction of ceramide levels, all of which have been shown to promote α-syn phosphorylation and aggregation. We also analyzed neurotoxicity of α-syn oligomers relative to plasma from different patients. Neurotoxicity was not related to age or gender of the patients. However, neurotoxicity was positively correlated with H&Y staging score. The modification in the plasma may promote spreading of α-syn aggregates via an alternative pathway and accelerate progression of PD.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Mirko Bibl ◽  
Hermann Esselmann ◽  
Piotr Lewczuk ◽  
Claudia Trenkwalder ◽  
Markus Otto ◽  
...  

We studied the diagnostic value of CSF Aβ42/tau versus low Aβ1–42% and high Aβ1–40ox% levels for differential diagnosis of Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), respectively. CSF of 45 patients with AD, 15 with DLB, 21 with Parkinson's disease dementia (PDD), and 40 nondemented disease controls (NDC) was analyzed by Aβ-SDS-PAGE/immunoblot and ELISAs (Aβ42 and tau). Aβ42/tau lacked specificity in discriminating AD from DLB and PDD. Best discriminating biomarkers were Aβ1–42% and Aβ1–40ox% for AD and DLB, respectively. AD and DLB could be differentiated by both Aβ1–42% and Aβ1–40ox% with an accuracy of 80% at minimum. Thus, we consider Aβ1–42% and Aβ1–40ox% to be useful biomarkers for AD and DLB, respectively. We propose further studies on the integration of Aβ1–42% and Aβ1–40ox% into conventional assay formats. Moreover, future studies should investigate the combination of Aβ1–40ox% and CSF alpha-synuclein for the diagnosis of DLB.


2018 ◽  
Vol 24 (20) ◽  
pp. 2317-2321 ◽  
Author(s):  
David D. Haines ◽  
Maxim V. Trushin ◽  
Stephen Rose ◽  
Iloki Assanga Simon Bernard ◽  
Fadia F. Mahmoud

Neurodegenerative disorders have been and remain persistent sources of enormous suffering throughout human history. The tragedy of their impact on human relationships, physical vitality, and fundamental dignity cannot be understated. Parkinson’s disease (PD), one of the most common of these terrible illnesses, has a global incidence of approximately two-to-four percent of the human population, along with devastating social and economic impact. The present review analyzes aspects of PD pathophysiology that offer particularly attractive strategies for the development of improved prevention and therapy. The occurrence, symptoms, pathogenesis, and etiology of PD are considered, with focus on how the Alpha synuclein protein, which normally regulates neurotransmitter release, is aggregated by oxidative stressors into toxic inclusions, prominently including Lewy bodies and insoluble fibrils that disrupt the organization of brain areas responsible for motor control. The contribution to a progressively prooxidant tissue environment resulting from interaction between advanced glycation end products (AGEs) and their cognate receptors (RAGEs) is examined here as a significant driver of PD. This review also explores strategies currently being developed by a U.S.-Russian team that may reduce the risk and severity of PD by use of recombinant atoxic derivatives (ad) of botulinum neurotoxins (BoNT/A ad), that traffic inducers of the cytoprotective enzyme heme oxygenase to selected midbrain neurons, at which Alpha synuclein aggregation occurs. Considered together, the topic material presented here provides both researchers and clinicians with a short but concise overview of the current understanding of PD pathology and approaches to biotherapeutic (precision) countermeasures to its onset and progression.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Connor Bargar ◽  
Wen Wang ◽  
Steven A. Gunzler ◽  
Alexandra LeFevre ◽  
Zerui Wang ◽  
...  

AbstractDefinitive diagnosis of Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) relies on postmortem finding of disease-associated alpha-synuclein (αSynD) as misfolded protein aggregates in the central nervous system (CNS). The recent development of the real-time quaking induced conversion (RT-QuIC) assay for ultrasensitive detection of αSynD aggregates has revitalized the diagnostic values of clinically accessible biospecimens, including cerebrospinal fluid (CSF) and peripheral tissues. However, the current αSyn RT-QuIC assay platforms vary widely and are thus challenging to implement and standardize the measurements of αSynD across a wide range of biospecimens and in different laboratories. We have streamlined αSyn RT-QuIC assay based on a second generation assay platform that was assembled entirely with commercial reagents. The streamlined RT-QuIC method consisted of a simplified protocol requiring minimal hands-on time, and allowing for a uniform analysis of αSynD in different types of biospecimens from PD and DLB. Ultrasensitive and specific RT-QuIC detection of αSynD aggregates was achieved in million-fold diluted brain homogenates and in nanoliters of CSF from PD and DLB cases but not from controls. Comparative analysis revealed higher seeding activity of αSynD in DLB than PD in both brain homogenates and CSF. Our assay was further validated with CSF samples of 214 neuropathologically confirmed cases from tissue repositories (88 PD, 58 DLB, and 68 controls), yielding a sensitivity of 98% and a specificity of 100%. Finally, a single RT-QuIC assay protocol was employed uniformly to detect seeding activity of αSynD in PD samples across different types of tissues including the brain, skin, salivary gland, and colon. We anticipate that our streamlined protocol will enable interested laboratories to easily and rapidly implement the αSyn RT-QuIC assay for various clinical specimens from PD and DLB. The utilization of commercial products for all assay components will improve the robustness and standardization of the RT-QuIC assay for diagnostic applications across different sites. Due to ultralow sample consumption, the ultrasensitive RT-QuIC assay will facilitate efficient use and sharing of scarce resources of biospecimens. Our streamlined RT-QuIC assay is suitable to track the distribution of αSynD in CNS and peripheral tissues of affected patients. The ongoing evaluation of RT-QuIC assay of αSynD as a potential biomarker for PD and DLB in clinically accessible biospecimens has broad implications for understanding disease pathogenesis, improving early and differential diagnosis, and monitoring therapeutic efficacies in clinical trials.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kathrin Brockmann ◽  
Corinne Quadalti ◽  
Stefanie Lerche ◽  
Marcello Rossi ◽  
Isabel Wurster ◽  
...  

AbstractThe clinicopathological heterogeneity in Lewy-body diseases (LBD) highlights the need for pathology-driven biomarkers in-vivo. Misfolded alpha-synuclein (α-Syn) is a lead candidate based on its crucial role in disease pathophysiology. Real-time quaking-induced conversion (RT-QuIC) analysis of CSF has recently shown high sensitivity and specificity for the detection of misfolded α-Syn in patients with Parkinson's disease (PD) and dementia with Lewy bodies (DLB). In this study we performed the CSF RT-QuIC assay in 236 PD and 49 DLB patients enriched for different genetic forms with mutations in GBA, parkin, PINK1, DJ1, and LRRK2. A subgroup of 100 PD patients was also analysed longitudinally. We correlated kinetic seeding parameters of RT-QuIC with genetic status and CSF protein levels of molecular pathways linked to α-Syn proteostasis. Overall, 85% of PD and 86% of DLB patients showed positive RT-QuIC α-Syn seeding activity. Seeding profiles were significantly associated with mutation status across the spectrum of genetic LBD. In PD patients, we detected positive α-Syn seeding in 93% of patients carrying severe GBA mutations, in 78% with LRRK2 mutations, in 59% carrying heterozygous mutations in recessive genes, and in none of those with bi-allelic mutations in recessive genes. Among PD patients, those with severe GBA mutations showed the highest seeding activity based on RT-QuIC kinetic parameters and the highest proportion of samples with 4 out of 4 positive replicates. In DLB patients, 100% with GBA mutations showed positive α-Syn seeding compared to 79% of wildtype DLB. Moreover, we found an association between α-Syn seeding activity and reduced CSF levels of proteins linked to α-Syn proteostasis, specifically lysosome-associated membrane glycoprotein 2 and neurosecretory protein VGF.These findings highlight the value of α-Syn seeding activity as an in-vivo marker of Lewy-body pathology and support its use for patient stratification in clinical trials targeting α-Syn.


2012 ◽  
Vol 22 (2) ◽  
Author(s):  
Eirik Auning ◽  
Arvid Rongve ◽  
Dag Aarsland

Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) are common and debilitating dementia syndromes accompanied by Parkinsonism and a range of other psychiatric, sleep and autonomic disturbances. Disease mechanisms are unknown, but aggregated Lewy bodies containing alpha-synuclein are believed to play a central role in the pathogenesis. Point-prevalence of dementia in Parkinson's disease (PD) is approximately 30%, and the majority develop dementia as the disease progresses. Recent studies suggest that 25-30% of non-demented PD patients have mild cognitive impairment (MCI), and 15-20% already have it at the time of the diagnosis. PD-MCI is a strong predictor of PDD. There are few welldesigned epidemiological studies of DLB, but available evidence suggests that 15-20% of the total dementia population have DLB. Predicting future cognitive impairment is a priority, but the pre-dementia stage of DLB is essentially unexplored. Promising biomarkers are being researched, but, given the complexity of this disease, a multimodal approach is more likely to permit diagnostic precision in the future.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Geidy E Serrano ◽  
David Shprecher ◽  
Michael Callan ◽  
Brett Cutler ◽  
Michael Glass ◽  
...  

Abstract Comorbid Lewy body pathology is very common in Alzheimer’s disease and may confound clinical trial design, yet there is no in vivo test to identify patients with this. Tissue (and/or radioligand imaging) studies have shown cardiac sympathetic denervation in Parkinson’s disease and dementia with Lewy bodies, but this has not been explored in Alzheimer’s subjects with Lewy bodies not meeting dementia with Lewy bodies clinicopathological criteria. To determine if Alzheimer’s disease with Lewy bodies subjects show sympathetic cardiac denervation, we analysed epicardial and myocardial tissue from autopsy-confirmed cases using tyrosine hydroxylase and neurofilament immunostaining. Comparison of tyrosine hydroxylase fibre density in 19 subjects with Alzheimer’s disease/dementia with Lewy bodies, 20 Alzheimer’s disease with Lewy bodies, 12 Alzheimer’s disease subjects without Lewy body disease, 19 Parkinson’s disease, 30 incidental Lewy body disease and 22 cognitively normal without Alzheimer’s disease or Lewy body disease indicated a significant group difference (P < 0.01; Kruskal–Wallis analysis of variance) and subsequent pair-wise Mann–Whitney U tests showed that Parkinson’s disease (P < 0.05) and Alzheimer’s disease/dementia with Lewy bodies (P < 0.01) subjects, but not Alzheimer’s disease with Lewy bodies subjects, had significantly reduced tyrosine hydroxylase fibre density as compared with cognitively normal. Both Parkinson’s disease and Alzheimer’s disease/dementia with Lewy bodies subjects also showed significant epicardial losses of neurofilament protein-immunoreactive nerve fibre densities within the fibre bundles as compared with cognitively normal subjects (P < 0.01) and both groups showed high pathologic alpha-synuclein densities (P < 0.0001). Cardiac alpha-synuclein densities correlated significantly with brain alpha-synuclein (P < 0.001), while cardiac tyrosine hydroxylase and neurofilament immunoreactive nerve fibre densities were negatively correlated with the densities of both brain and cardiac alpha-synuclein, as well as Unified Parkinson’s Disease Rating Scale scores (P < 0.05). The clear separation of Alzheimer’s disease/dementia with Lewy bodies subjects from Alzheimer’s disease and cognitively normal, based on cardiac tyrosine hydroxylase fibre density, is the first report of a statistically significant difference between these groups. Our data do not show significant sympathetic cardiac denervation in Alzheimer’s disease with Lewy bodies, but strongly confirm that cardiac nuclear imaging with a noradrenergic radioligand is worthy of further study as a potential means to separate Alzheimer’s disease from Alzheimer’s disease/dementia with Lewy bodies during life.


2005 ◽  
Vol 32 (S 4) ◽  
Author(s):  
P Häussermann ◽  
A.O Ceballos-Baumann ◽  
H Förstl ◽  
R Feurer ◽  
B Conrad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document