scholarly journals Blood Plasma of Patients with Parkinson’s Disease Increases Alpha-Synuclein Aggregation and Neurotoxicity

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Peng Wang ◽  
Xin Li ◽  
Xuran Li ◽  
Weiwei Yang ◽  
Shun Yu

A pathological hallmark of Parkinson’s disease (PD) is formation of Lewy bodies in neurons of the brain. This has been attributed to the spread of α-synuclein (α-syn) aggregates, which involves release of α-syn from a neuron and its reuptake by a neighboring neuron. We found that treatment with plasma from PD patients induced more α-syn phosphorylation and oligomerization than plasma from normal subjects (NS). Compared with NS plasma, PD plasma added to primary neuron cultures caused more cell death in the presence of extracellular α-syn. This was supported by the observations that phosphorylated α-syn oligomers entered neurons, rapidly increased accumulated thioflavin S-positive inclusions, and induced a series of metabolic changes that included activation of polo-like kinase 2, inhibition of glucocerebrosidase and protein phosphatase 2A, and reduction of ceramide levels, all of which have been shown to promote α-syn phosphorylation and aggregation. We also analyzed neurotoxicity of α-syn oligomers relative to plasma from different patients. Neurotoxicity was not related to age or gender of the patients. However, neurotoxicity was positively correlated with H&Y staging score. The modification in the plasma may promote spreading of α-syn aggregates via an alternative pathway and accelerate progression of PD.

2018 ◽  
Vol 24 (20) ◽  
pp. 2317-2321 ◽  
Author(s):  
David D. Haines ◽  
Maxim V. Trushin ◽  
Stephen Rose ◽  
Iloki Assanga Simon Bernard ◽  
Fadia F. Mahmoud

Neurodegenerative disorders have been and remain persistent sources of enormous suffering throughout human history. The tragedy of their impact on human relationships, physical vitality, and fundamental dignity cannot be understated. Parkinson’s disease (PD), one of the most common of these terrible illnesses, has a global incidence of approximately two-to-four percent of the human population, along with devastating social and economic impact. The present review analyzes aspects of PD pathophysiology that offer particularly attractive strategies for the development of improved prevention and therapy. The occurrence, symptoms, pathogenesis, and etiology of PD are considered, with focus on how the Alpha synuclein protein, which normally regulates neurotransmitter release, is aggregated by oxidative stressors into toxic inclusions, prominently including Lewy bodies and insoluble fibrils that disrupt the organization of brain areas responsible for motor control. The contribution to a progressively prooxidant tissue environment resulting from interaction between advanced glycation end products (AGEs) and their cognate receptors (RAGEs) is examined here as a significant driver of PD. This review also explores strategies currently being developed by a U.S.-Russian team that may reduce the risk and severity of PD by use of recombinant atoxic derivatives (ad) of botulinum neurotoxins (BoNT/A ad), that traffic inducers of the cytoprotective enzyme heme oxygenase to selected midbrain neurons, at which Alpha synuclein aggregation occurs. Considered together, the topic material presented here provides both researchers and clinicians with a short but concise overview of the current understanding of PD pathology and approaches to biotherapeutic (precision) countermeasures to its onset and progression.


2022 ◽  
Vol 13 ◽  
Author(s):  
Emily M. Klann ◽  
Upuli Dissanayake ◽  
Anjela Gurrala ◽  
Matthew Farrer ◽  
Aparna Wagle Shukla ◽  
...  

Parkinson’s disease is a chronic neurodegenerative disease characterized by the accumulation of misfolded alpha-synuclein protein (Lewy bodies) in dopaminergic neurons of the substantia nigra and other related circuitry, which contribute to the development of both motor (bradykinesia, tremors, stiffness, abnormal gait) and non-motor symptoms (gastrointestinal issues, urinogenital complications, olfaction dysfunction, cognitive impairment). Despite tremendous progress in the field, the exact pathways and mechanisms responsible for the initiation and progression of this disease remain unclear. However, recent research suggests a potential relationship between the commensal gut bacteria and the brain capable of influencing neurodevelopment, brain function and health. This bidirectional communication is often referred to as the microbiome–gut–brain axis. Accumulating evidence suggests that the onset of non-motor symptoms, such as gastrointestinal manifestations, often precede the onset of motor symptoms and disease diagnosis, lending support to the potential role that the microbiome–gut–brain axis might play in the underlying pathological mechanisms of Parkinson’s disease. This review will provide an overview of and critically discuss the current knowledge of the relationship between the gut microbiota and Parkinson’s disease. We will discuss the role of α-synuclein in non-motor disease pathology, proposed pathways constituting the connection between the gut microbiome and the brain, existing evidence related to pre- and probiotic interventions. Finally, we will highlight the potential opportunity for the development of novel preventative measures and therapeutic options that could target the microbiome–gut–brain axis in the context of Parkinson’s disease.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yasir Hasan Siddique ◽  
Wasi Khan ◽  
Braj Raj Singh ◽  
Alim H. Naqvi

The genetic models in Drosophila provide a platform to understand the mechanism associated with degenerative diseases. The model for Parkinson's disease (PD) based on normal human alpha-synuclein (αS) expression was used in the present study. The aggregation of αS in brain leads to the formation of Lewy bodies and selective loss of dopaminergic neurons due to oxidative stress. Polyphenols generally have the reduced oral bioavailability, increased metabolic turnover, and lower permeability through the blood brain barrier. In the present study, the effect of synthesized alginate-curcumin nanocomposite was studied on the climbing ability of the PD model flies, lipid peroxidation, and apoptosis in the brain of PD model flies. The alginate-curcumin nanocomposite at final doses of 10−5, 10−3, and 10−1 g/mL was supplemented with diet, and the flies were allowed to feed for 24 days. A significant dose-dependent delay in the loss of climbing ability and reduction in the oxidative stress and apoptosis in the brain of PD model flies were observed. The results suggest that alginate-curcumin nanocomposite is potent in delaying the climbing disability of PD model flies and also reduced the oxidative stress as well as apoptosis in the brain of PD model flies.


2017 ◽  
Vol 114 (40) ◽  
pp. 10773-10778 ◽  
Author(s):  
Seong Su Kang ◽  
Zhentao Zhang ◽  
Xia Liu ◽  
Fredric P. Manfredsson ◽  
Matthew J. Benskey ◽  
...  

BDNF/TrkB neurotrophic signaling is essential for dopaminergic neuronal survival, and the activities are reduced in the substantial nigra (SN) of Parkinson’s disease (PD). However, whether α-Syn (alpha-synuclein) aggregation, a hallmark in the remaining SN neurons in PD, accounts for the neurotrophic inhibition remains elusive. Here we show that α-Syn selectively interacts with TrkB receptors and inhibits BDNF/TrkB signaling, leading to dopaminergic neuronal death. α-Syn binds to the kinase domain on TrkB, which is negatively regulated by BDNF or Fyn tyrosine kinase. Interestingly, α-Syn represses TrkB lipid raft distribution, decreases its internalization, and reduces its axonal trafficking. Moreover, α-Syn also reduces TrkB protein levels via up-regulation of TrkB ubiquitination. Remarkably, dopamine’s metabolite 3,4-Dihydroxyphenylacetaldehyde (DOPAL) stimulates the interaction between α-Syn and TrkB. Accordingly, MAO-B inhibitor rasagiline disrupts α-Syn/TrkB complex and rescues TrkB neurotrophic signaling, preventing α-Syn–induced dopaminergic neuronal death and restoring motor functions. Hence, our findings demonstrate a noble pathological role of α-Syn in antagonizing neurotrophic signaling, providing a molecular mechanism that accounts for its neurotoxicity in PD.


2021 ◽  
Author(s):  
S. R. Stockdale ◽  
L. A. Draper ◽  
S. M. O’Donovan ◽  
W. Barton ◽  
O. O’Sullivan ◽  
...  

AbstractParkinson’s disease (PD) is a chronic neurological disorder associated with the misfolding of alpha-synuclein (α-syn) into Lewy body aggregates within nerve cells that contribute to their neurodegeneration. Recent evidence suggests α-syn aggregation may begin in the gut and travel to the brain along the vagus nerve, with microbes a potential trigger initiating the misfolding of α-syn. However, changes in the gut virome in response to α-syn alterations have not been investigated. In this study, we show longitudinal changes in the faecal virome of rats administered either monomeric or preformed fibrils (PFF) of α-syn directly into their enteric nervous system. Differential changes in rat viromes were observed when comparing monomeric and PFF α-syn. The virome β-diversity changes after α-syn treatment were compounded by the addition of LPS as an adjunct. Changes in the diversity of rat faecal viromes were observed after one month and did not resolve within the study’s five month observational period. Overall, these results suggest that microbiome alterations associated with PD may, partially, be reactive to host α-syn associated changes.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Epaminondas Doxakis

AbstractParkinson’s disease (PD) is a complex, age-related, neurodegenerative disease whose etiology, pathology, and clinical manifestations remain incompletely understood. As a result, care focuses primarily on symptoms relief. Circular RNAs (circRNAs) are a large class of mostly noncoding RNAs that accumulate with aging in the brain and are increasingly shown to regulate all aspects of neuronal and glial development and function. They are generated by the spliceosome through the backsplicing of linear RNA. Although their biological role remains largely unknown, they have been shown to regulate transcription and splicing, act as decoys for microRNAs and RNA binding proteins, used as templates for translation, and serve as scaffolding platforms for signaling components. Considering that they are stable, diverse, and detectable in easily accessible biofluids, they are deemed promising biomarkers for diagnosing diseases. CircRNAs are differentially expressed in the brain of patients with PD, and growing evidence suggests that they regulate PD pathogenetic processes. Here, the biogenesis, expression, degradation, and detection of circRNAs, as well as their proposed functions, are reviewed. Thereafter, research linking circRNAs to PD-related processes, including aging, alpha-synuclein dysregulation, neuroinflammation, and oxidative stress is highlighted, followed by recent evidence for their use as prognostic and diagnostic biomarkers for PD.


2018 ◽  
Author(s):  
Tim E. Moors ◽  
Christina A. Maat ◽  
Daniel Niedieker ◽  
Daniel Mona ◽  
Dennis Petersen ◽  
...  

AbstractPost-translational modifications of alpha-synuclein (aSyn), particularly phosphorylation at Serine 129 (Ser129-p) and truncation of its C-terminus (CTT), have been implicated in Parkinson’s disease (PD) pathology. To gain more insight in the relevance of Ser129-p and CTT aSyn under physiological and pathological conditions, we investigated their subcellular distribution patterns in normal aged and PD brains using highly-selective antibodies in combination with 3D multicolor STED microscopy. We show that CTT aSyn localizes in mitochondria in PD patients and controls, whereas the organization of Ser129-p in a cytoplasmic network is strongly associated with pathology. Nigral Lewy bodies show an onion skin-like architecture, with a structured framework of Ser129-p aSyn and neurofilaments encapsulating CTT aSyn in their core, which displayed high content of proteins and lipids by label-free CARS microscopy. The subcellular phenotypes of antibody-labeled pathology identified in this study provide evidence for a crucial role of Ser129-p aSyn in Lewy body formation.


Sign in / Sign up

Export Citation Format

Share Document