scholarly journals Transfer learning for predicting conversion from mild cognitive impairment to dementia of Alzheimer's type based on a three-dimensional convolutional neural network

2021 ◽  
Vol 99 ◽  
pp. 53-64
Author(s):  
Jinhyeong Bae ◽  
Jane Stocks ◽  
Ashley Heywood ◽  
Youngmoon Jung ◽  
Lisanne Jenkins ◽  
...  
2019 ◽  
Author(s):  
Jinhyeong Bae ◽  
Jane Stocks ◽  
Ashley Heywood ◽  
Youngmoon Jung ◽  
Lisanne Jenkins ◽  
...  

AbstractDementia of Alzheimer’s Type (DAT) is associated with a devastating and irreversible cognitive decline. As a pharmacological intervention has not yet been developed to reverse disease progression, preventive medicine will play a crucial role for patient care and treatment planning. However, predicting which patients will progress to DAT is difficult as patients with Mild Cognitive Impairment (MCI) could either convert to DAT (MCI-C) or not (MCI-NC). In this paper, we develop a deep learning model to address the heterogeneous nature of DAT development. Structural magnetic resonance imaging was utilized as a single biomarker, and a three-dimensional convolutional neural network (3D-CNN) was developed. The 3D-CNN was trained using transfer learning from the classification of Normal Control and DAT scans at the source task. This was applied to the target task of classifying MCI-C and MCI-NC scans. The model results in 82.4% classification accuracy, which outperforms current models in the field. Furthermore, by implementing an occlusion map approach, we visualize key brain regions that significantly contribute to the prediction of MCI-C and MCI-NC. Results show the hippocampus, amygdala, cerebellum, and pons regions as significant to prediction, which are consistent with current understanding of disease. Finally, the model’s prediction value is significantly correlated with rates of change in clinical assessment scores, indicating the model is able to predict an individual patient’s future cognitive decline. This information, in conjunction with the identified anatomical features, will aid in building a personalized therapeutic strategy for individuals with MCI. This model could also be useful for selection of participants for clinical trials.


2021 ◽  
Vol 7 ◽  
pp. e560
Author(s):  
Ethan Ocasio ◽  
Tim Q. Duong

Background While there is no cure for Alzheimer’s disease (AD), early diagnosis and accurate prognosis of AD may enable or encourage lifestyle changes, neurocognitive enrichment, and interventions to slow the rate of cognitive decline. The goal of our study was to develop and evaluate a novel deep learning algorithm to predict mild cognitive impairment (MCI) to AD conversion at three years after diagnosis using longitudinal and whole-brain 3D MRI. Methods This retrospective study consisted of 320 normal cognition (NC), 554 MCI, and 237 AD patients. Longitudinal data include T1-weighted 3D MRI obtained at initial presentation with diagnosis of MCI and at 12-month follow up. Whole-brain 3D MRI volumes were used without a priori segmentation of regional structural volumes or cortical thicknesses. MRIs of the AD and NC cohort were used to train a deep learning classification model to obtain weights to be applied via transfer learning for prediction of MCI patient conversion to AD at three years post-diagnosis. Two (zero-shot and fine tuning) transfer learning methods were evaluated. Three different convolutional neural network (CNN) architectures (sequential, residual bottleneck, and wide residual) were compared. Data were split into 75% and 25% for training and testing, respectively, with 4-fold cross validation. Prediction accuracy was evaluated using balanced accuracy. Heatmaps were generated. Results The sequential convolutional approach yielded slightly better performance than the residual-based architecture, the zero-shot transfer learning approach yielded better performance than fine tuning, and CNN using longitudinal data performed better than CNN using a single timepoint MRI in predicting MCI conversion to AD. The best CNN model for predicting MCI conversion to AD at three years after diagnosis yielded a balanced accuracy of 0.793. Heatmaps of the prediction model showed regions most relevant to the network including the lateral ventricles, periventricular white matter and cortical gray matter. Conclusions This is the first convolutional neural network model using longitudinal and whole-brain 3D MRIs without extracting regional brain volumes or cortical thicknesses to predict future MCI to AD conversion at 3 years after diagnosis. This approach could lead to early prediction of patients who are likely to progress to AD and thus may lead to better management of the disease.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kanghan Oh ◽  
Young-Chul Chung ◽  
Ko Woon Kim ◽  
Woo-Sung Kim ◽  
Il-Seok Oh

AbstractRecently, deep-learning-based approaches have been proposed for the classification of neuroimaging data related to Alzheimer’s disease (AD), and significant progress has been made. However, end-to-end learning that is capable of maximizing the impact of deep learning has yet to receive much attention due to the endemic challenge of neuroimaging caused by the scarcity of data. Thus, this study presents an approach meant to encourage the end-to-end learning of a volumetric convolutional neural network (CNN) model for four binary classification tasks (AD vs. normal control (NC), progressive mild cognitive impairment (pMCI) vs. NC, stable mild cognitive impairment (sMCI) vs. NC and pMCI vs. sMCI) based on magnetic resonance imaging (MRI) and visualizes its outcomes in terms of the decision of the CNNs without any human intervention. In the proposed approach, we use convolutional autoencoder (CAE)-based unsupervised learning for the AD vs. NC classification task, and supervised transfer learning is applied to solve the pMCI vs. sMCI classification task. To detect the most important biomarkers related to AD and pMCI, a gradient-based visualization method that approximates the spatial influence of the CNN model’s decision was applied. To validate the contributions of this study, we conducted experiments on the ADNI database, and the results demonstrated that the proposed approach achieved the accuracies of 86.60% and 73.95% for the AD and pMCI classification tasks respectively, outperforming other network models. In the visualization results, the temporal and parietal lobes were identified as key regions for classification.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7634
Author(s):  
Peng Zhang ◽  
Shukuan Lin ◽  
Jianzhong Qiao ◽  
Yue Tu

Alzheimer’s disease (AD), the most common type of dementia, is a progressive disease beginning with mild memory loss, possibly leading to loss of the ability to carry on a conversation and respond to environments. It can seriously affect a person’s ability to carry out daily activities. Therefore, early diagnosis of AD is conducive to better treatment and avoiding further deterioration of the disease. Magnetic resonance imaging (MRI) has become the main tool for humans to study brain tissues. It can clearly reflect the internal structure of a brain and plays an important role in the diagnosis of Alzheimer’s disease. MRI data is widely used for disease diagnosis. In this paper, based on MRI data, a method combining a 3D convolutional neural network and ensemble learning is proposed to improve the diagnosis accuracy. Then, a data denoising module is proposed to reduce boundary noise. The experimental results on ADNI dataset demonstrate that the model proposed in this paper improves the training speed of the neural network and achieves 95.2% accuracy in AD vs. NC (normal control) task and 77.8% accuracy in sMCI (stable mild cognitive impairment) vs. pMCI (progressive mild cognitive impairment) task in the diagnosis of Alzheimer’s disease.


In this paper, the classification of normal controls (NC), very mild cognitive impairment and the early stage of Alzheimer’s disease (AD) known as mild cognitive impairment (MCI) from magnetic resonance imaging (MRI) is proposed, based on the two dimensional variational mode decomposition (2D-VMD) and deep convolutional neural network (DCNN). The 2D-VMD is applied to decompose the MRI scans into a discrete number of band limited intrinsic mode functions (BLIMFs). The automatic feature extraction, selection and optimization are performed using the proposed DCNN. The classification accuracy and learning speed of the 2D-VMD-DCNN method are compared with DCNN by taking the MRI data as input. The superior classification accuracy of the proposed 2D-VMD-DCNN method over DCNN method as well as other recently introduced prevalent methods is the major advantage for analyzing the biomedical images in the field of health care


Sign in / Sign up

Export Citation Format

Share Document