Morphological classification of brains via high-dimensional shape transformations and machine learning methods

NeuroImage ◽  
2004 ◽  
Vol 21 (1) ◽  
pp. 46-57 ◽  
Author(s):  
Zhiqiang Lao ◽  
Dinggang Shen ◽  
Zhong Xue ◽  
Bilge Karacali ◽  
Susan M. Resnick ◽  
...  
2020 ◽  
Vol 493 (3) ◽  
pp. 4209-4228 ◽  
Author(s):  
Ting-Yun Cheng ◽  
Christopher J Conselice ◽  
Alfonso Aragón-Salamanca ◽  
Nan Li ◽  
Asa F L Bluck ◽  
...  

ABSTRACT There are several supervised machine learning methods used for the application of automated morphological classification of galaxies; however, there has not yet been a clear comparison of these different methods using imaging data, or an investigation for maximizing their effectiveness. We carry out a comparison between several common machine learning methods for galaxy classification [Convolutional Neural Network (CNN), K-nearest neighbour, logistic regression, Support Vector Machine, Random Forest, and Neural Networks] by using Dark Energy Survey (DES) data combined with visual classifications from the Galaxy Zoo 1 project (GZ1). Our goal is to determine the optimal machine learning methods when using imaging data for galaxy classification. We show that CNN is the most successful method of these ten methods in our study. Using a sample of ∼2800 galaxies with visual classification from GZ1, we reach an accuracy of ∼0.99 for the morphological classification of ellipticals and spirals. The further investigation of the galaxies that have a different ML and visual classification but with high predicted probabilities in our CNN usually reveals the incorrect classification provided by GZ1. We further find the galaxies having a low probability of being either spirals or ellipticals are visually lenticulars (S0), demonstrating that supervised learning is able to rediscover that this class of galaxy is distinct from both ellipticals and spirals. We confirm that ∼2.5 per cent galaxies are misclassified by GZ1 in our study. After correcting these galaxies’ labels, we improve our CNN performance to an average accuracy of over 0.99 (accuracy of 0.994 is our best result).


2019 ◽  
Vol 32 (0) ◽  
pp. 46-51 ◽  
Author(s):  
M. Yu. Vasylenko ◽  
D. V. Dobrycheva ◽  
I. B. Vavilova ◽  
O. V. Melnyk ◽  
A. A. Elyiv

Author(s):  
Matheus del Valle ◽  
Kleber Stancari ◽  
Pedro Arthur Augusto de Castro ◽  
Moises Oliveira dos Santos ◽  
Denise Maria Zezell

ACS Omega ◽  
2018 ◽  
Vol 3 (11) ◽  
pp. 15837-15849 ◽  
Author(s):  
Yang Li ◽  
Yujia Tian ◽  
Zijian Qin ◽  
Aixia Yan

PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0166898 ◽  
Author(s):  
Monique A. Ladds ◽  
Adam P. Thompson ◽  
David J. Slip ◽  
David P. Hocking ◽  
Robert G. Harcourt

2014 ◽  
Vol 5 (3) ◽  
pp. 82-96 ◽  
Author(s):  
Marijana Zekić-Sušac ◽  
Sanja Pfeifer ◽  
Nataša Šarlija

Abstract Background: Large-dimensional data modelling often relies on variable reduction methods in the pre-processing and in the post-processing stage. However, such a reduction usually provides less information and yields a lower accuracy of the model. Objectives: The aim of this paper is to assess the high-dimensional classification problem of recognizing entrepreneurial intentions of students by machine learning methods. Methods/Approach: Four methods were tested: artificial neural networks, CART classification trees, support vector machines, and k-nearest neighbour on the same dataset in order to compare their efficiency in the sense of classification accuracy. The performance of each method was compared on ten subsamples in a 10-fold cross-validation procedure in order to assess computing sensitivity and specificity of each model. Results: The artificial neural network model based on multilayer perceptron yielded a higher classification rate than the models produced by other methods. The pairwise t-test showed a statistical significance between the artificial neural network and the k-nearest neighbour model, while the difference among other methods was not statistically significant. Conclusions: Tested machine learning methods are able to learn fast and achieve high classification accuracy. However, further advancement can be assured by testing a few additional methodological refinements in machine learning methods.


Sign in / Sign up

Export Citation Format

Share Document