scholarly journals Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla

NeuroImage ◽  
2007 ◽  
Vol 37 (4) ◽  
pp. 1161-1177 ◽  
Author(s):  
Essa Yacoub ◽  
Amir Shmuel ◽  
Nikos Logothetis ◽  
Kâmil Uğurbil
2016 ◽  
Author(s):  
Denis Chaimow ◽  
Amir Shmuel

AbstractThe effects of k-space sampling and signal decay on the effective spatial resolution of MRI and functional MRI (fMRI) are commonly assessed by means of the magnitude point-spread function (PSF), defined as the absolute values (magnitudes) of the complex MR imaging PSF. It is commonly assumed that this magnitude PSF signifies blurring, which can be quantified by its full-width at half-maximum (FWHM). Here we show that the magnitude PSF fails to accurately represent the true effects of k-space sampling and signal decay.Firstly, a substantial part of the width of the magnitude PSF is due to MRI sampling per se. This part is independent of any signal decay and its effect depends on the spatial frequency composition of the imaged object. Therefore, it cannot always be expected to introduce blurring. Secondly, MRI reconstruction is typically followed by taking the absolute values (magnitude image) of the reconstructed complex image. This introduces a non-linear stage into the process of image formation. The complex imaging PSF does not fully describe this process, since it does not reflect the stage of taking the magnitude image. Its corresponding magnitude PSF fails to correctly describe this process, since convolving the original pattern with the magnitude PSF is different from the true process of taking the absolute following a convolution with the complex imaging PSF. Lastly, signal decay can have not only a blurring, but also a high-pass filtering effect. This cannot be reflected by the strictly positive width of the magnitude PSF.As an alternative, we propose to first approximate the MRI process linearly. We then model the linear approximation by decomposing it into a signal decay-independent MR sampling part and an approximation of the signal decay effect. We approximate the latter as a convolution with a Gaussian PSF or, if the effect is that of high-pass filtering, as reversing the effect of a convolution with a Gaussian PSF. We show that for typical high-resolution fMRI at 7 Tesla, signal decay in Spin-Echo has a moderate blurring effect (FWHM = 0.89 voxels, corresponds to 0.44 mm for 0.5 mm wide voxels). In contrast, Gradient-Echo acts as a moderate high-pass filter that can be interpreted as reversing a Gaussian blurring with FWHM = 0.59 voxels (0.30 mm for 0.5 mm wide voxels). Our improved approximations and findings hold not only for Gradient-Echo and Spin-Echo fMRI but also for GRASE and VASO fMRI. Our findings support the correct planning, interpretation, and modeling of high-resolution fMRI.


2016 ◽  
Author(s):  
Denis Chaimow ◽  
Essa Yacoub ◽  
Kâmil Uğurbil ◽  
Amir Shmuel

AbstractPrevious attempts at characterizing the spatial specificity of the blood oxygenation level dependent functional MRI (BOLD fMRI) response by estimating its point-spread function (PSF) have conventionally relied on spatial representations of visual stimuli in area V1. Consequently, their estimates were confounded by the width and scatter of receptive fields of V1 neurons. Here, we circumvent these limits by instead using the inherent cortical spatial organization of ocular dominance columns (ODCs) to determine the PSF for both Gradient Echo (GE) and Spin Echo (SE) BOLD imaging at 7 Tesla. By applying Markov Chain Monte Carlo sampling on a probabilistic generative model of imaging ODCs, we quantified the PSFs that best predict the spatial structure and magnitude of differential ODCs’ responses. Prior distributions for the ODC model parameters were determined by analyzing published data of cytochrome oxidase patterns from post-mortem histology of human V1 and of neurophysio-logical ocular dominance indices. The most probable PSF full-widths at halfmaximum were 0.82 mm (SE) and 1.02 mm (GE). Our results provide a quantitative basis for the spatial specificity of BOLD fMRI at ultra-high fields, which can be used for planning and interpretation of high-resolution differential fMRI of fine-scale cortical organizations.


2002 ◽  
Vol 42 (19) ◽  
pp. 2295-2310 ◽  
Author(s):  
Greg A. Woodbury ◽  
Rick van der Zwan ◽  
William G. Gibson

2000 ◽  
Vol 20 (5) ◽  
pp. 847-860 ◽  
Author(s):  
Ikuhiro Kida ◽  
Richard P. Kennan ◽  
Douglas L. Rothman ◽  
Kevin L. Behar ◽  
Fahmeed Hyder

The blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) method, which is sensitive to vascular paramagnetic deoxyhemoglobin, is dependent on regional values of cerebral metabolic rate of oxygen utilization (CMRO2), blood flow (CBF), and volume (CBV). Induced changes in deoxyhemoglobin function as an endogenous contrast agent, which in turn affects the transverse relaxation rates of tissue water that can be measured by gradient-echo and spin-echo sequences in BOLD fMRI. The purpose here was to define the quantitative relation between BOLD signal change and underlying physiologic parameters. To this end, magnetic resonance imaging and spectroscopy methods were used to measure CBF, CMRO2, CBV, and relaxation rates (with gradient-echo and spin-echo sequences) at 7 Tesla in rat sensorimotor cortex, where cerebral activity was altered pharmacologically within the autoregulatory range. The changes in tissue transverse relaxation rates were negatively and linearly correlated with changes in CBF, CMRO2, and CBV. The multiparametric measurements revealed that CBF and CMRO2 are the dominant physiologic parameters that modulate the BOLD fMRI signal, where the ratios of (ΔCMRO2/CMRO2)/(ΔCBF/CBF) and (ΔCBV/CBV)/(ΔCBF/CBF) were 0.86 ± 0.02 and 0.03 ± 0.02, respectively. The calibrated BOLD signals (spatial resolution of 48 μL) from gradient-echo and spin-echo sequences were used to predict changes in CMRO2 using measured changes in CBF, CBV, and transverse relaxation rates. The excellent agreement between measured and predicted values for changes in CMRO2 provides experimental support of the current theory of the BOLD phenomenon. In gradient-echo sequences, BOLD contrast is affected by reversible processes such as static inhomogeneities and slow diffusion, whereas in spin-echo sequences these effects are refocused and are mainly altered by extravascular spin diffusion. This study provides steps by which multiparametric MRI measurements can be used to obtain high-spatial resolution CMRO2 maps.


Sign in / Sign up

Export Citation Format

Share Document