scholarly journals Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics

NeuroImage ◽  
2015 ◽  
Vol 111 ◽  
pp. 476-488 ◽  
Author(s):  
Jingyuan E. Chen ◽  
Catie Chang ◽  
Michael D. Greicius ◽  
Gary H. Glover
2019 ◽  
Vol 44 (9) ◽  
pp. 1604-1612 ◽  
Author(s):  
Roselinde H. Kaiser ◽  
Min Su Kang ◽  
Yechan Lew ◽  
Julie Van Der Feen ◽  
Blaise Aguirre ◽  
...  

2021 ◽  
Author(s):  
Gilles Naeije ◽  
Nicolas Coquelet ◽  
Vincent Wens ◽  
Serge Goldman ◽  
Massimo Pandolfo ◽  
...  

Author(s):  
Paula Sanz Leon ◽  
Stuart A. Knock ◽  
M. Marmaduke Woodman ◽  
Lia Domide ◽  
Jochen Mersmann ◽  
...  

Author(s):  
Xerxes D. Arsiwalla ◽  
Riccardo Zucca ◽  
Alberto Betella ◽  
Enrique Martinez ◽  
David Dalmazzo ◽  
...  

2017 ◽  
Author(s):  
Hause Lin ◽  
Oshin Vartanian

Neuroeconomics is the study of the neurobiological bases of subjective preferences and choices. We present a novel framework that synthesizes findings from the literatures on neuroeconomics and creativity to provide a neurobiological description of creative cognition. It proposes that value-based decision-making processes and activity in the locus coeruleus-norepinephrine (LC-NE) neuromodulatory system underlie creative cognition, as well as the large-scale brain network dynamics shown to be associated with creativity. This framework allows us to re-conceptualize creative cognition as driven by value-based decision making, in the process providing several falsifiable hypotheses that can further our understanding of creativity, decision making, and brain network dynamics.


2018 ◽  
Author(s):  
RL van den Brink ◽  
S Nieuwenhuis ◽  
TH Donner

ABSTRACTThe widely projecting catecholaminergic (norepinephrine and dopamine) neurotransmitter systems profoundly shape the state of neuronal networks in the forebrain. Current models posit that the effects of catecholaminergic modulation on network dynamics are homogenous across the brain. However, the brain is equipped with a variety of catecholamine receptors with distinct functional effects and heterogeneous density across brain regions. Consequently, catecholaminergic effects on brain-wide network dynamics might be more spatially specific than assumed. We tested this idea through the analysis of functional magnetic resonance imaging (fMRI) measurements performed in humans (19 females, 5 males) at ‘rest’ under pharmacological (atomoxetine-induced) elevation of catecholamine levels. We used a linear decomposition technique to identify spatial patterns of correlated fMRI signal fluctuations that were either increased or decreased by atomoxetine. This yielded two distinct spatial patterns, each expressing reliable and specific drug effects. The spatial structure of both fluctuation patterns resembled the spatial distribution of the expression of catecholamine receptor genes: α1 norepinephrine receptors (for the fluctuation pattern: placebo > atomoxetine), ‘D2-like’ dopamine receptors (pattern: atomoxetine > placebo), and β norepinephrine receptors (for both patterns, with correlations of opposite sign). We conclude that catecholaminergic effects on the forebrain are spatially more structured than traditionally assumed and at least in part explained by the heterogeneous distribution of various catecholamine receptors. Our findings link catecholaminergic effects on large-scale brain networks to low-level characteristics of the underlying neurotransmitter systems. They also provide key constraints for the development of realistic models of neuromodulatory effects on large-scale brain network dynamics.SIGNIFICANCE STATEMENTThe catecholamines norepinephrine and dopamine are an important class of modulatory neurotransmitters. Because of the widespread and diffuse release of these neuromodulators, it has commonly been assumed that their effects on neural interactions are homogenous across the brain. Here, we present results from the human brain that challenge this view. We pharmacologically increased catecholamine levels and imaged the effects on the spontaneous covariations between brain-wide fMRI signals at ‘rest’. We identified two distinct spatial patterns of covariations: one that was amplified and another that was suppressed by catecholamines. Each pattern was associated with the heterogeneous spatial distribution of the expression of distinct catecholamine receptor genes. Our results provide novel insights into the catecholaminergic modulation of large-scale human brain dynamics.


Author(s):  
Payel Das ◽  
Brian Quanz ◽  
Pin-Yu Chen ◽  
Jae-wook Ahn ◽  
Dhruv Shah

Creativity, a process that generates novel and meaningful ideas, involves increased association between task-positive (control) and task-negative (default) networks in the human brain. Inspired by this seminal finding, in this study we propose a creative decoder within a deep generative framework, which involves direct modulation of the neuronal activation pattern after sampling from the learned latent space. The proposed approach is fully unsupervised and can be used off- the-shelf. Several novelty metrics and human evaluation were used to evaluate the creative capacity of the deep decoder. Our experiments on different image datasets (MNIST, FMNIST, MNIST+FMNIST, WikiArt and CelebA) reveal that atypical co-activation of highly activated and weakly activated neurons in a deep decoder promotes generation of novel and meaningful artifacts.


2020 ◽  
Author(s):  
Giovanni Rabuffo ◽  
Jan Fousek ◽  
Christophe Bernard ◽  
Viktor Jirsa

AbstractAt rest, mammalian brains display a rich complex spatiotemporal behavior, which is reminiscent of healthy brain function and has provided nuanced understandings of several major neurological conditions. Despite the increasingly detailed phenomenological documentation of the brain’s resting state, its principle underlying causes remain unknown. To establish causality, we link structurally defined features of a brain network model to neural activation patterns and their variability. For the mouse, we use a detailed connectome-based model and simulate the resting state dynamics for neural sources and whole brain imaging signals (Blood-Oxygen-Level-Dependent (BOLD), Electroencephalography (EEG)). Under conditions of near-criticality, characteristic neuronal cascades form spontaneously and propagate through the network. The largest neuronal cascades produce short-lived but robust co-fluctuations at pairs of regions across the brain. During these co-activation episodes, long-lasting functional networks emerge giving rise to epochs of stable resting state networks correlated in time. Sets of neural cascades are typical for a resting state network, but different across. We experimentally confirm the existence and stability of functional connectivity epochs comprising BOLD co-activation bursts in mice (N=19). We further demonstrate the leading role of the neuronal cascades in a simultaneous EEG/fMRI data set in humans (N=15), explaining a large part of the variability of functional connectivity dynamics. We conclude that short-lived neuronal cascades are a major robust dynamic component contributing to the organization of the slowly evolving spontaneous fluctuations in brain dynamics at rest.


2016 ◽  
Vol 234 (12) ◽  
pp. 3425-3431 ◽  
Author(s):  
Evie Malaia ◽  
Erik Bates ◽  
Benjamin Seitzman ◽  
Katherine Coppess

Sign in / Sign up

Export Citation Format

Share Document