Structural damage in early preterm brain changes the electric resting state networks

NeuroImage ◽  
2015 ◽  
Vol 120 ◽  
pp. 266-273 ◽  
Author(s):  
Amir Omidvarnia ◽  
Marjo Metsäranta ◽  
Aulikki Lano ◽  
Sampsa Vanhatalo
2020 ◽  
Vol 26 (14) ◽  
pp. 1809-1815
Author(s):  
Massimo Bertoli ◽  
Franca Tecchio

Fatigue in multiple sclerosis (MS) is a highly invalidating symptom, lacking efficacious drugs. This topical review aims at assessing the signs in the literature of functional versus structural damage prevalence at the origin of MS fatigue by focusing on papers that assessed the two counterparts in the same patients, paying attention that the fatigue levels do not correlate with clinical severity. We summarize and discuss evidence of increased levels of fatigue occurring together with the alterations of functional connectivity at multiple levels, in the absence of any relationship with lesion load and local atrophy of the involved structures. Specifically, neuronal communication mainly altered in the corticomuscular synchronizations, between hemispheric homologs and in the resting-state networks involved in emotion (cingulate cortex) and effort-reward balance (striatum and inferior parietal lobule). Finally, given the functional prevalence in neuronal network alterations at the origin of fatigue in MS, we highlight the relevance of developing treatments aiming at compensating the neuronal electric communication dysfunctions.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 2092-P
Author(s):  
LETICIA ESPOSITO SEWAYBRICKER ◽  
SUSAN J. MELHORN ◽  
MARY K. ASKREN ◽  
MARY WEBB ◽  
VIDHI TYAGI ◽  
...  

2020 ◽  
Vol 10 (9) ◽  
Author(s):  
Xiang‐Xin Xing ◽  
Xu‐Yun Hua ◽  
Mou‐Xiong Zheng ◽  
Zhen‐Zhen Ma ◽  
Bei‐Bei Huo ◽  
...  

2020 ◽  
Vol 27 ◽  
pp. 102336
Author(s):  
Margherita Carboni ◽  
Pia De Stefano ◽  
Bernd J. Vorderwülbecke ◽  
Sebastien Tourbier ◽  
Emeline Mullier ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Nigul Ilves ◽  
Pilvi Ilves ◽  
Rael Laugesaar ◽  
Julius Juurmaa ◽  
Mairi Männamaa ◽  
...  

Perinatal stroke is a leading cause of congenital hemiparesis and neurocognitive deficits in children. Dysfunctions in the large-scale resting-state functional networks may underlie cognitive and behavioral disability in these children. We studied resting-state functional connectivity in patients with perinatal stroke collected from the Estonian Pediatric Stroke Database. Neurodevelopment of children was assessed by the Pediatric Stroke Outcome Measurement and the Kaufman Assessment Battery. The study included 36 children (age range 7.6–17.9 years): 10 with periventricular venous infarction (PVI), 7 with arterial ischemic stroke (AIS), and 19 controls. There were no differences in severity of hemiparesis between the PVI and AIS groups. A significant increase in default mode network connectivity (FDR 0.1) and lower cognitive functions (p<0.05) were found in children with AIS compared to the controls and the PVI group. The children with PVI had no significant differences in the resting-state networks compared to the controls and their cognitive functions were normal. Our findings demonstrate impairment in cognitive functions and neural network profile in hemiparetic children with AIS compared to children with PVI and controls. Changes in the resting-state networks found in children with AIS could possibly serve as the underlying derangements of cognitive brain functions in these children.


Sign in / Sign up

Export Citation Format

Share Document