scholarly journals Long-term development of white matter fibre density and morphology up to 13 years after preterm birth: A fixel-based analysis

NeuroImage ◽  
2020 ◽  
Vol 220 ◽  
pp. 117068 ◽  
Author(s):  
Claire E. Kelly ◽  
Deanne K. Thompson ◽  
Sila Genc ◽  
Jian Chen ◽  
Joseph YM. Yang ◽  
...  
2020 ◽  
Vol 88 (5) ◽  
pp. 739-748 ◽  
Author(s):  
Barbara Schnider ◽  
◽  
Ruth Tuura ◽  
Vera Disselhoff ◽  
Bea Latal ◽  
...  

Abstract Background Executive function deficits in children born very preterm (VPT) have been linked to anatomical abnormalities in white matter and subcortical brain structures. This study aimed to investigate how altered brain metabolism contributes to these deficits in VPT children at school-age. Methods Fifty-four VPT participants aged 8–13 years and 62 term-born peers were assessed with an executive function test battery. Brain metabolites were obtained in the frontal white matter and the basal ganglia/thalami, using proton magnetic resonance spectroscopy (MRS). N-acetylaspartate (NAA)/creatine (Cr), choline (Cho)/Cr, glutamate + glutamine (Glx)/Cr, and myo-Inositol (mI)/Cr were compared between groups and associations with executive functions were explored using linear regression. Results In the frontal white matter, VPT showed lower Glx/Cr (mean difference: −5.91%, 95% CI [−10.50, −1.32]), higher Cho/Cr (7.39%, 95%-CI [2.68, 12.10]), and higher mI/Cr (5.41%, 95%-CI [0.18, 10.64]) while there were no differences in the basal ganglia/thalami. Lower executive functions were associated with lower frontal Glx/Cr ratios in both groups (β = 0.16, p = 0.05) and higher mI/Cr ratios in the VPT group only (interaction: β = −0.17, p = 0.02). Conclusion Long-term brain metabolite alterations in the frontal white matter may be related to executive function deficits in VPT children at school-age. Impact Very preterm birth is associated with long-term brain metabolite alterations in the frontal white matter. Such alterations may contribute to deficits in executive function abilities. Injury processes in the brain can persist for years after the initial insult. Our findings provide new insights beyond structural and functional imaging, which help to elucidate the processes involved in abnormal brain development following preterm birth. Ultimately, this may lead to earlier identification of children at risk for developing deficits and more effective interventions.


2020 ◽  
Author(s):  
Claire E Kelly ◽  
Deanne K Thompson ◽  
Sila Genc ◽  
Jian Chen ◽  
Joseph YM Yang ◽  
...  

AbstractBackgroundIt is well documented that infants born very preterm (VP) are at risk of brain injury and altered brain development in the neonatal period, however there is a lack of long-term, longitudinal studies on the effects of VP birth on white matter development over childhood. Most previous studies were based on voxel-averaged, non-fibre-specific diffusion magnetic resonance imaging (MRI) measures, such as fractional anisotropy. In contrast, the novel diffusion MRI analysis framework, fixel-based analysis (FBA), enables whole-brain analysis of microstructural and macrostructural properties of individual fibre populations at a sub-voxel level. We applied FBA to investigate the long-term implications of VP birth and associated perinatal risk factors on fibre development in childhood and adolescence.MethodsDiffusion images were acquired for a cohort of VP (born <30 weeks’ gestation) and full-term (FT, ≥37 weeks’ gestation) children at two ages: mean (SD) 7.6 (0.2) years (n=138 VP and 32 FT children) and 13.3 (0.4) years (n=130 VP and 45 FT children). 103 VP and 21 FT children had images at both ages for longitudinal analysis. At every fixel (individual fibre population within an image voxel) across the white matter, we compared FBA metrics (fibre density (FD), cross-section (FC) and a combination of these properties (FDC)) between VP and FT groups cross-sectionally at each age, and longitudinally between ages. We also examined associations between perinatal risk factors and FBA metrics in the VP group.ResultsCompared with FT children, VP children had lower FD, FC and FDC throughout the white matter, particularly in the corpus callosum, tapetum, inferior fronto-occipital fasciculus, fornix and cingulum at ages 7 and 13 years, as well as the motor pathways at age 13 years. VP children also had slower FDC development in the corpus callosum and corticospinal tract between ages 7 and 13 years compared with FT children. Within VP children, earlier gestational age at birth, lower birth weight z-score, and neonatal brain abnormalities were associated with lower FD, FC and FDC throughout the white matter at both ages.ConclusionsVP birth and concomitant perinatal risk factors are associated with fibre tract-specific alterations to axonal development in childhood and adolescence.


NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S46
Author(s):  
Z Nagy ◽  
J Ashburner ◽  
J Andersson ◽  
S Jbabdi ◽  
B Draganski ◽  
...  

2019 ◽  
Author(s):  
Justin C. Hayes ◽  
Katherine L Alfred ◽  
Rachel Pizzie ◽  
Joshua S. Cetron ◽  
David J. M. Kraemer

Modality specific encoding habits account for a significant portion of individual differences reflected in functional activation during cognitive processing. Yet, little is known about how these habits of thought influence long-term structural changes in the brain. Traditionally, habits of thought have been assessed using self-report questionnaires such as the visualizer-verbalizer questionnaire. Here, rather than relying on subjective reports, we measured habits of thought using a novel behavioral task assessing attentional biases toward picture and word stimuli. Hypothesizing that verbal habits of thought are reflected in the structural integrity of white matter tracts and cortical regions of interest, we used diffusion tensor imaging and volumetric analyses to assess this prediction. Using a whole-brain approach, we show that word bias is associated with increased volume in several bilateral language regions, in both white and grey matter parcels. Additionally, connectivity within white matter tracts within an a priori speech production network increased as a function of word bias. These results demonstrate long-term structural and morphological differences associated with verbal habits of thought.


Author(s):  
Frederik Grosse ◽  
Stefan Mark Rueckriegel ◽  
Ulrich-Wilhelm Thomale ◽  
Pablo Hernáiz Driever

Abstract Purpose Diaschisis of cerebrocerebellar loops contributes to cognitive and motor deficits in pediatric cerebellar brain tumor survivors. We used a cerebellar white matter atlas and hypothesized that lesion symptom mapping may reveal the critical lesions of cerebellar tracts. Methods We examined 31 long-term survivors of pediatric posterior fossa tumors (13 pilocytic astrocytoma, 18 medulloblastoma). Patients underwent neuronal imaging, examination for ataxia, fine motor and cognitive function, planning abilities, and executive function. Individual consolidated cerebellar lesions were drawn manually onto patients’ individual MRI and normalized into Montreal Neurologic Institute (MNI) space for further analysis with voxel-based lesion symptom mapping. Results Lesion symptom mapping linked deficits of motor function to the superior cerebellar peduncle (SCP), deep cerebellar nuclei (interposed nucleus (IN), fastigial nucleus (FN), ventromedial dentate nucleus (DN)), and inferior vermis (VIIIa, VIIIb, IX, X). Statistical maps of deficits of intelligence and executive function mapped with minor variations to the same cerebellar structures. Conclusion We identified lesions to the SCP next to deep cerebellar nuclei as critical for limiting both motor and cognitive function in pediatric cerebellar tumor survivors. Future strategies safeguarding motor and cognitive function will have to identify patients preoperatively at risk for damage to these critical structures and adapt multimodal therapeutic options accordingly.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Francesca Garofoli ◽  
Stefania Longo ◽  
Camilla Pisoni ◽  
Patrizia Accorsi ◽  
Micol Angelini ◽  
...  

Abstract Background Prevention of neurodevelopmental impairment due to preterm birth is a major health challenge. Despite advanced obstetric and neonatal care, to date there are few neuroprotective molecules available. Melatonin has been shown to have anti-oxidant/anti-inflammatory effects and to reduce brain damage, mainly after hypoxic ischemic encephalopathy. The planned study will be the first aiming to evaluate the capacity of melatonin to mitigate brain impairment due to premature birth. Method In our planned prospective, multicenter, double-blind, randomized vs placebo study, we will recruit, within 96 h of birth, 60 preterm newborns with a gestational age ≤ 29 weeks + 6 days; these infants will be randomly allocated to oral melatonin, 3 mg/kg/day, or placebo for 15 days. After the administration period, we will measure plasma levels of malondialdehyde, a lipid peroxidation product considered an early biological marker of melatonin treatment efficacy (primary outcome). At term-equivalent age, we will evaluate neurological status (through cerebral ultrasound, cerebral magnetic resonance imaging, vision and hearing evaluations, clinical neurological assessment, and screening for retinopathy of prematurity) as well as the incidence of bronchodysplasia and sepsis. We will also monitor neurodevelopmental outcome during the first 24 months of corrected age (using the modified Fagan Test of Infant Intelligence at 4–6 months and standardized neurological and developmental assessments at 24 months). Discussion Preterm birth survivors often present long-term neurodevelopmental sequelae, such as motor, learning, social-behavioral, and communication problems. We aim to assess the role of melatonin as a neuroprotectant during the first weeks of extrauterine life, when preterm infants are unable to produce it spontaneously. This approach is based on the supposition that its anti-oxidant mechanism could be useful in preventing neurodevelopmental impairment. Considering the short- and long-term morbidities related to preterm birth, and the financial and social costs of the care of preterm infants, both at birth and over time, we suggest that melatonin administration could lead to considerable saving of resources. This would be the first study addressing the role of melatonin in very low birth weight preterm newborns, and it could provide a basis for further studies on melatonin as a neuroprotection strategy in this vulnerable population. Trial registration ClinicalTrials.gov NCT04235673. Prospectively registered on 22 January 2020.


Author(s):  
Ju Sun Heo ◽  
Jiwon M. Lee

The preterm-born adult population is ever increasing following improved survival rates of premature births. We conducted a meta-analysis to investigate long-term effects of preterm birth on renal function in preterm-born survivors. We searched PubMed and EMBASE to identify studies that compared renal function in preterm-born survivors and full-term-born controls, published until 2 February 2019. A random effects model with standardized mean difference (SMD) was used for meta-analyses. Heterogeneity of the studies was evaluated using Higgin’s I2 statistics. Risk of bias was assessed using the Newcastle–Ottawa quality assessment scale. Of a total of 24,388 articles screened, 27 articles were finally included. Compared to full-term-born controls, glomerular filtration rate and effective renal plasma flow were significantly decreased in preterm survivors (SMD −0.54, 95% confidence interval (CI), −0.85 to −0.22, p = 0.0008; SMD −0.39, 95% CI, −0.74 to −0.04, p = 0.03, respectively). Length and volume of the kidneys were significantly decreased in the preterm group compared to the full-term controls (SMD −0.73, 95% CI, −1.04 to −0.41, p < 0.001; SMD −0.82, 95% CI, −1.05 to −0.60, p < 0.001, respectively). However, serum levels of blood urea nitrogen, creatinine, and cystatin C showed no significant difference. The urine microalbumin to creatinine ratio was significantly increased in the preterm group. Both systolic and diastolic blood pressures were also significantly elevated in the preterm group, although the plasma renin level did not differ. This meta-analysis demonstrates that preterm-born survivors may be subject to decreased glomerular filtration, increased albuminuria, decreased kidney size and volume, and hypertension even though their laboratory results may not yet deteriorate.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii432-iii432
Author(s):  
Adeoye Oyefiade ◽  
Kiran Beera ◽  
Iska Moxon-Emre ◽  
Jovanka Skocic ◽  
Ute Bartels ◽  
...  

Abstract INTRODUCTION Treatments for pediatric brain tumors (PBT) are neurotoxic and lead to long-term deficits that are driven by the perturbation of underlying white matter (WM). It is unclear if and how treatment may impair WM connectivity across the entire brain. METHODS Magnetic resonance images from 41 PBT survivors (mean age: 13.19 years, 53% M) and 41 typically developing (TD) children (mean age: 13.32 years, 51% M) were analyzed. Image reconstruction, segmentation, and node parcellation were completed in FreeSurfer. DTI maps and probabilistic streamline generation were completed in MRtrix3. Connectivity matrices were based on the number of streamlines connecting two nodes and the mean DTI (FA) index across streamlines. We used graph theoretical analyses to define structural differences between groups, and random forest (RF) analyses to identify hubs that reliably classify PBT and TD children. RESULTS For survivors treated with radiation, betweeness centrality was greater in the left insular (p &lt; 0.000) but smaller in the right pallidum (p &lt; 0.05). For survivors treated without radiation (surgery-only), betweeness centrality was smaller in the right interparietal sulcus (p &lt; 0.05). RF analyses showed that differences in WM connectivity from the right pallidum to other parts of the brain reliably classified PBT survivors from TD children (classification accuracy = 77%). CONCLUSIONS The left insular, right pallidum, and right inter-parietal sulcus are structurally perturbed hubs in PBT survivors. WM connectivity from the right pallidum is vulnerable to the long-term effects of treatment for PBT.


Sign in / Sign up

Export Citation Format

Share Document