mGlu3 receptor signaling during predator odor (TMT) exposure contributes to context re-exposure reactivity and NMDA receptor adaptations in the brain

2022 ◽  
pp. 108943
Author(s):  
Ryan E. Tyler ◽  
Maya N. Bluitt ◽  
Julie L. Engers ◽  
Craig W. Lindsley ◽  
Joyce Besheer
2011 ◽  
Vol 301 (2) ◽  
pp. R448-R455 ◽  
Author(s):  
Jason Wright ◽  
Carlos Campos ◽  
Thiebaut Herzog ◽  
Mihai Covasa ◽  
Krzysztof Czaja ◽  
...  

Intraperitoneal injection of CCK reduces food intake and triggers a behavioral pattern similar to natural satiation. Reduction of food intake by CCK is mediated by vagal afferents that innervate the stomach and small intestine. These afferents synapse in the hindbrain nucleus of the solitary tract (NTS) where gastrointestinal satiation signals are processed. Previously, we demonstrated that intraperitoneal (IP) administration of either competitive or noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists attenuates reduction of food intake by CCK. However, because vagal afferents themselves express NMDA receptors at both central and peripheral endings, our results did not speak to the question of whether NMDA receptors in the brain play an essential role in reduction of feeding by CCK. We hypothesized that activation of NMDA receptors in the NTS is necessary for reduction of food intake by CCK. To test this hypothesis, we measured food intake following IP CCK, subsequent to NMDA receptor antagonist injections into the fourth ventricle, directly into the NTS or subcutaneously. We found that either fourth-ventricle or NTS injection of the noncompetitive NMDA receptor antagonist MK-801 was sufficient to inhibit CCK-induced reduction of feeding, while the same antagonist doses injected subcutaneously did not. Similarly fourth ventricle injection of d-3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphoric acid (d-CPPene), a competitive NMDA receptor antagonist, also blocked reduction of food intake following IP CCK. Finally, d-CPPene injected into the fourth ventricle attenuated CCK-induced expression of nuclear c-Fos immunoreactivity in the dorsal vagal complex. We conclude that activation of NMDA receptors in the hindbrain is necessary for the reduction of food intake by CCK. Hindbrain NMDA receptors could comprise a critical avenue for control and modulation of satiation signals to influence food intake and energy balance.


2010 ◽  
Vol 113 (2) ◽  
pp. 447-453 ◽  
Author(s):  
Arie Reijerkerk ◽  
Gijs Kooij ◽  
Susanne M. A. van der Pol ◽  
Thomas Leyen ◽  
Kim Lakeman ◽  
...  

2005 ◽  
Vol 1031 (1) ◽  
pp. 30-38 ◽  
Author(s):  
Shashank M. Dravid ◽  
Daniel G. Baden ◽  
Thomas F. Murray

2014 ◽  
Vol 259 ◽  
pp. 45-49 ◽  
Author(s):  
Kimie Niimi ◽  
Yanfei Han ◽  
Ying Zhou ◽  
Takuro Yoshimoto ◽  
Fu Dai ◽  
...  

1992 ◽  
Vol 137 (2) ◽  
pp. 169-172 ◽  
Author(s):  
Yoshihisa Kitamura ◽  
Xue-Hui Zhao ◽  
Toshio Ohnuki ◽  
Makiko Takei ◽  
Yasuyuki Nomura

1986 ◽  
Vol 64 (3) ◽  
pp. 369-375 ◽  
Author(s):  
S. R. El-Defrawy ◽  
R. J. Boegman ◽  
K. Jhamandas ◽  
R. J. Beninger

Excitotoxins such as kainic acid, ibotenic acid, and quinolinic acid are a group of molecules structurally related to glutamate or aspartate. They are capable of exciting neurons and producing axon sparing neuronal degeneration. Quinolinic acid (QUIN), an endogenous metabolite of the amino acid, tryptophan, has been detected in brain and its concentration increases with age. The content of QUIN in the brain and the activity of the enzymes involved in its synthesis and metabolism show a regional distribution. The neuroexcitatory action of QUIN is antagonized by magnesium (Mg2+) and the aminophosphonates, proposed N-methyl-D-aspartate (NMDA) receptor antagonists, suggesting that QUIN acts at the Mg2+-sensitive NMDA receptor. Like its excitatory effects, QUIN's neurotoxic actions in the striatum are antagonized by the aminophosphonates. This suggests that QUIN neurotoxicity involves the NMDA receptor and (or) another receptor sensitive to the aminophosphonates. The neuroexcitatory and neurotoxic effects of QUIN are antagonized by kynurenic acid (KYN), another metabolite of tryptophan. QUIN toxicity is dependent on excitatory amino acid afferents and shows a regional variation in the brain. Local injection of QUIN into the nucleus basalis magnocellularis (NBM) results in a dose-dependent reduction in cortical cholinergic markers including the evoked release of acetylcholine. A significant reduction in cortical cholinergic function is maintained over a 3-month period. Coinjection of an equimolar ratio of QUIN and KYN into the NBM results in complete protection against QUIN-induced neurodegeneration and decreases in cortical cholinergic markers. In contrast, focal injections of QUIN into the frontoparietal cortex do not alter cortical cholinergic function. Animals showing central cholinergic hypofunction induced by QUIN could serve as experimental models for testing pharmacological agents aimed at improving the function of damaged cholinergic neurons.


Sign in / Sign up

Export Citation Format

Share Document