Dopamine-dependent long term potentiation in the dorsal striatum is reduced in the R6/2 mouse model of Huntington’s disease

Neuroscience ◽  
2007 ◽  
Vol 146 (4) ◽  
pp. 1571-1580 ◽  
Author(s):  
V.W.S. Kung ◽  
R. Hassam ◽  
A.J. Morton ◽  
S. Jones
2021 ◽  
Author(s):  
Alena Salašová ◽  
Niels Sanderhoff Degn ◽  
Mikhail Paveliev ◽  
Niels Kjaergaard Madsen ◽  
Saray Benito ◽  
...  

Huntington's disease (HD) is a fatal neurodegenerative disorder characterized by progressive motor dysfunction and loss of medium spiny neurons (MSNs) in dorsal striatum. Brain-derived neurotrophic factor (BDNF) sustains functionality and integrity of MSNs, and thus reduced BDNF signaling is integral to the disease. Here we show that SorCS2 is expressed in MSNs with reduced expression in R6/1 HD model, and that SorCS2 deficiency exacerbates the disease progression in R6/1 mice. Furthermore, we find that SorCS2 binds TrkB and the NMDA receptor subunit GluN2B, which is required to control neurotransmission in corticostriatal synapses. While BDNF stimulates SorCS2-TrkB complex formation to enable TrkB signaling, it disengages SorCS2 from GluN2B, leading to enrichment of the subunit at postsynaptic densities. Consequently, long-term potentiation (LTP) is abolished in SorCS2 deficient mice, despite increased striatal TrkB and unaltered BDNF expression. In contrast, the addition of exogenous BDNF rescues the phenotype. Finally, GluN2B, but not GluN2A, currents are also severely impaired in the SorCS2 KO mice. To conclude, we uncovered that SorCS2 dynamically targets TrkB and GluN2B to orchestrate BDNF-dependent plasticity in MSNs of dorsal striatum. We propose that SorCS2 deficiency impairs MSN function thereby increasing neuronal vulnerability and accelerating the motor deficits in Huntington's disease.


2012 ◽  
Vol 123 (9) ◽  
pp. e98 ◽  
Author(s):  
Shinya Ohminami ◽  
Yasuo Terao ◽  
Yuichiro Shirota ◽  
Ryosuke Tsutsumi ◽  
Jun Goto ◽  
...  

2018 ◽  
Vol 120 (6) ◽  
pp. 3077-3084 ◽  
Author(s):  
Ellen T. Koch ◽  
Cameron L. Woodard ◽  
Lynn A. Raymond

Glutamate is the main excitatory neurotransmitter in the brain, and impairments in its signaling are associated with many neurological disorders, including Huntington’s disease (HD). Previous studies in HD mouse models demonstrate altered glutamate receptor distribution and signaling at cortico-striatal synapses, and some studies suggest that glutamate release is altered; however, traditional methods to study synaptic glutamate release are indirect or have poor temporal resolution. Here we utilize iGluSnFR, a modified green fluorescent protein reporter for real-time imaging of glutamate transmission, to study presynaptic modulation of cortical glutamate release in the striatum of the YAC128 HD mouse model. We determined that iGluSnFR can be used to accurately measure short- and long-term changes in glutamate release caused by modulation of extracellular Ca2+ levels, activation of presynaptic receptors, and high-frequency stimulation (HFS) protocols. We also confirmed a difference in the expression of HFS-induced long-term depression in YAC128. Together, this research demonstrates the utility of iGluSnFR in studying presynaptic modulation of glutamate release in healthy mice and disease models that display impairments in glutamate signaling. NEW & NOTEWORTHY We use iGluSnFR to directly assess presynaptic modulation of cortico-striatal glutamate release in brain slice and compare changes in glutamate release between wild type and a Huntington’s disease mouse model, YAC128. We observed reductions in glutamate release after low extracellular Ca2+ and activation of various presynaptic receptors. We also demonstrate a presynaptic mechanism of reduced glutamate release in high-frequency stimulation-induced long-term depression and show this to be altered in YAC128.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Seonghoo Huh ◽  
Soo-Ji Baek ◽  
Kyung-Hwa Lee ◽  
Daniel J. Whitcomb ◽  
Jihoon Jo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document