Ethyl pyruvate ameliorates intracerebral hemorrhage-induced brain injury through anti-cell death and anti-inflammatory mechanisms

Neuroscience ◽  
2013 ◽  
Vol 245 ◽  
pp. 99-108 ◽  
Author(s):  
X. Su ◽  
H. Wang ◽  
L. Zhu ◽  
J. Zhao ◽  
H. Pan ◽  
...  
2010 ◽  
Vol 37 (3) ◽  
pp. 711-722 ◽  
Author(s):  
Hongxia Shen ◽  
Xiaoming Hu ◽  
Can Liu ◽  
Suping Wang ◽  
Wenting Zhang ◽  
...  

2021 ◽  
Vol 6 (56) ◽  
pp. eabd6279
Author(s):  
Michael H. Askenase ◽  
Brittany A. Goods ◽  
Hannah E. Beatty ◽  
Arthur F. Steinschneider ◽  
Sofia E. Velazquez ◽  
...  

Opportunities to interrogate the immune responses in the injured tissue of living patients suffering from acute sterile injuries such as stroke and heart attack are limited. We leveraged a clinical trial of minimally invasive neurosurgery for patients with intracerebral hemorrhage (ICH), a severely disabling subtype of stroke, to investigate the dynamics of inflammation at the site of brain injury over time. Longitudinal transcriptional profiling of CD14+ monocytes/macrophages and neutrophils from hematomas of patients with ICH revealed that the myeloid response to ICH within the hematoma is distinct from that in the blood and occurs in stages conserved across the patient cohort. Initially, hematoma myeloid cells expressed a robust anabolic proinflammatory profile characterized by activation of hypoxia-inducible factors (HIFs) and expression of genes encoding immune factors and glycolysis. Subsequently, inflammatory gene expression decreased over time, whereas anti-inflammatory circuits were maintained and phagocytic and antioxidative pathways up-regulated. During this transition to immune resolution, glycolysis gene expression and levels of the potent proresolution lipid mediator prostaglandin E2 remained elevated in the hematoma, and unexpectedly, these elevations correlated with positive patient outcomes. Ex vivo activation of human macrophages by ICH-associated stimuli highlighted an important role for HIFs in production of both inflammatory and anti-inflammatory factors, including PGE2, which, in turn, augmented VEGF production. Our findings define the time course of myeloid activation in the human brain after ICH, revealing a conserved progression of immune responses from proinflammatory to proresolution states in humans after brain injury and identifying transcriptional programs associated with neurological recovery.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Rebecca Heinz ◽  
Susan Brandenburg ◽  
Melina Nieminen-Kelhä ◽  
Irina Kremenetskaia ◽  
Philipp Boehm-Sturm ◽  
...  

Abstract Background Microglia-driven cerebral spreading inflammation is a key contributor to secondary brain injury after SAH. Genetic depletion or deactivation of microglia has been shown to ameliorate neuronal cell death. Therefore, clinically feasible anti-inflammatory approaches counteracting microglia accumulation or activation are interesting targets for SAH treatment. Here, we tested two different methods of interference with microglia-driven cerebral inflammation in a murine SAH model: (i) inflammatory preconditioning and (ii) pharmacological deactivation. Methods 7T-MRI-controlled SAH was induced by endovascular perforation in four groups of C57Bl/6 mice: (i) Sham-operation, (ii) SAH naïve, (iii) SAH followed by inflammatory preconditioning (LPS intraperitoneally), and (iv) SAH followed by pharmacological microglia deactivation (colony-stimulating factor-1 receptor-antagonist PLX3397 intraperitoneally). Microglia accumulation and neuronal cell death (immuno-fluorescence), as well as activation status (RT-PCR for inflammation-associated molecules from isolated microglia) were recorded at day 4 and 14. Toll-like receptor4 (TLR4) status was analyzed using FACS. Results Following SAH, significant cerebral spreading inflammation occurred. Microglia accumulation and pro-inflammatory gene expression were accompanied by neuronal cell death with a maximum on day 14 after SAH. Inflammatory preconditioning as well as PLX3397-treatment resulted in significantly reduced microglia accumulation and activation as well as neuronal cell death. TLR4 surface expression in preconditioned animals was diminished as a sign for receptor activation and internalization. Conclusions Microglia-driven cerebral spreading inflammation following SAH contributes to secondary brain injury. Two microglia-focused treatment strategies, (i) inflammatory preconditioning with LPS and (ii) pharmacological deactivation with PLX3397, led to significant reduction of neuronal cell death. Increased internalization of inflammation-driving TLR4 after preconditioning leaves less receptor molecules on the cell surface, providing a probable explanation for significantly reduced microglia activation. Our findings support microglia-focused treatment strategies to overcome secondary brain injury after SAH. Delayed inflammation onset provides a valuable clinical window of opportunity.


2007 ◽  
Vol 28 (5) ◽  
pp. 897-905 ◽  
Author(s):  
Yangdong He ◽  
Shu Wan ◽  
Ya Hua ◽  
Richard F Keep ◽  
Guohua Xi

Autophagy contributes to ischemic brain injury, but it is not clear if autophagy occurs after intracerebral hemorrhage (ICH). This study examined whether ICH-induced cell death is partly autophagic. It then examined the role of iron in inducing this form of cell death after ICH. Male, adult Sprague-Dawley rats received an infusion of autologous whole blood or ferrous iron into the right basal ganglia. Control rats (sham) had a needle insertion. The rats were killed at 1, 3, 7, or 28 days later. Some rats were treated with either deferoxamine or vehicle after ICH. Microtubule-associated protein light chain-3 (LC3), a biomarker of autophagosome, and cathepsin D, a lysosomal biomarker, were measured by Western blot analysis and immunohistochemistry. Immunofluorescent double-labeling was used to identify the cell types expressing cathepsin D. Electron microscopy was performed to examine the cellular ultrastructure changes after ICH. We found that conversion of LC3-I to LC3-II, cathepsin D expression, and vacuole formation are increased in the ipsilateral basal ganglia after ICH. Intracerebral infusion of iron also resulted in enhanced conversion of LC3-I to LC3-II and increased cathepsin D levels. Deferoxamine (an iron chelator) treatment significantly reduced the conversion of LC3-I to LC3-II and cathepsin D levels after ICH. Our results demonstrated that autophagy occurs after ICH, and iron has a key role in ICH-induced autophagy. This also suggests that iron-induced autophagy may play a role in brain injury in other diseases associated with iron overload.


2021 ◽  
pp. 113654
Author(s):  
Katherine Holste ◽  
Fan Xia ◽  
Hugh J.L. Garton ◽  
Shu Wan ◽  
Ya Hua ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document