Nicotinic activity depresses synaptic potentiation in layer V pyramidal neurons of mouse insular cortex

Neuroscience ◽  
2017 ◽  
Vol 358 ◽  
pp. 13-27 ◽  
Author(s):  
Hajime Sato ◽  
Tsutomu Kawano ◽  
Dong Xu Yin ◽  
Takafumi Kato ◽  
Hiroki Toyoda
2020 ◽  
Vol 22 (1) ◽  
pp. 259
Author(s):  
Hiroki Toyoda ◽  
Ayano Katagiri ◽  
Takafumi Kato ◽  
Hajime Sato

The pesticide rotenone inhibits mitochondrial complex I and is thought to cause neurological disorders such as Parkinson’s disease and cognitive disorders. However, little is known about the effects of rotenone on conditioned taste aversion memory. In the present study, we investigated whether intranasal administration of rotenone affects conditioned taste aversion memory in mice. We also examined how the intranasal administration of rotenone modulates synaptic transmission and plasticity in layer V pyramidal neurons of the mouse insular cortex that is critical for conditioned taste aversion memory. We found that the intranasal administration of rotenone impaired conditioned taste aversion memory to bitter taste. Regarding its cellular mechanisms, long-term depression (LTD) but not long-term potentiation (LTP) was impaired in rotenone-treated mice. Furthermore, spontaneous inhibitory synaptic currents and tonic GABA currents were decreased in layer V pyramidal neurons of rotenone-treated mice compared to the control mice. The impaired LTD observed in pyramidal neurons of rotenone-treated mice was restored by a GABAA receptor agonist muscimol. These results suggest that intranasal administration of rotenone decreases GABAergic synaptic transmission in layer V pyramidal neurons of the mouse insular cortex, the result of which leads to impairment of LTD and conditioned taste aversion memory.


2021 ◽  
Author(s):  
Kshitij Jadhav ◽  
Aurelien Bernheim ◽  
Lea Aeschlimann ◽  
Guylene Kirschmann ◽  
Isabelle Decosterd ◽  
...  

Development of self-regulatory competencies during adolescence is partially dependent on normative brain maturation. Here we report that juvenile rats as compared to adults exhibit impulsive and compulsive-like behavioral traits, the latter being associated with lower expression of mRNA levels of the immediate early gene zif268 in the anterior insula (AI). This observation suggests that deficits in AI function in juvenile rats could explain their immature pattern of interoceptive cue integration in rational decision-making and compulsive phenotype. In support of this, here we report hypoexcitability of juvenile layer-V pyramidal neurons in the AI, concomitant with reduced glutamatergic synaptic input to these cells. Chemogenetic activation of the AI attenuated the compulsive trait suggesting that delayed maturation of the AI results in suboptimal integration of sensory and cognitive information in adolescents and this contributes to inflexible behaviors in specific conditions of reward availability.


Resuscitation ◽  
1997 ◽  
Vol 35 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Victor A Akulinin ◽  
Sergey S Stepanov ◽  
Valeriy V Semchenko ◽  
Pavel V Belichenko

Author(s):  
Ahlem Assali ◽  
Jennifer Y. Cho ◽  
Evgeny Tsvetkov ◽  
Abha R. Gupta ◽  
Christopher W. Cowan

AbstractAutism spectrum disorder (ASD) is characterized by impairments in social communication and interaction and restricted, repetitive behaviors. It is frequently associated with comorbidities, such as attention-deficit hyperactivity disorder, altered sensory sensitivity, and intellectual disability. A de novo nonsense mutation in EPHB2 (Q857X) was discovered in a female patient with ASD [13], revealing EPHB2 as a candidate ASD risk gene. EPHB2 is a receptor tyrosine kinase implicated in axon guidance, synaptogenesis, and synaptic plasticity, positioning it as a plausible contributor to the pathophysiology of ASD and related disorders. In this study, we show that the Q857X mutation produced a truncated protein lacking forward signaling and that global disruption of one EphB2 allele (EphB2+/−) in mice produced several behavioral phenotypes reminiscent of ASD and common associated symptoms. EphB2+/− female, but not male, mice displayed increased repetitive behavior, motor hyperactivity, and learning and memory deficits, revealing sex-specific effects of EPHB2 hypofunction. Moreover, we observed a significant increase in the intrinsic excitability, but not excitatory/inhibitory ratio, of motor cortex layer V pyramidal neurons in EphB2+/− female, but not male, mice, suggesting a possible mechanism by which EPHB2 hypofunction may contribute to sex-specific motor-related phenotypes. Together, our findings suggest that EPHB2 hypofunction, particularly in females, is sufficient to produce ASD-associated behaviors and altered cortical functions in mice.


2002 ◽  
Vol 87 (5) ◽  
pp. 2490-2504 ◽  
Author(s):  
Michelle Day ◽  
Patricia A. Olson ◽  
Josef Platzer ◽  
Joerg Striessnig ◽  
D. James Surmeier

There is growing evidence linking alterations in serotonergic signaling in the prefrontal cortex to the etiology of schizophrenia. Prefrontal pyramidal neurons are richly innervated by serotonergic fibers and express high levels of serotonergic 5-HT2-class receptors. It is unclear, however, how activation of these receptors modulates cellular activity. To help fill this gap, whole cell voltage-clamp and single-cell RT-PCR studies of acutely isolated layer V–VI prefrontal pyramidal neurons were undertaken. The vast majority (>80%) of these neurons had detectable levels of 5-HT2A or 5-HT2C receptor mRNA. Bath application of 5-HT2 agonists inhibited voltage-dependent Ca2+ channel currents. L-type Ca2+ channels were a particularly prominent target of this signaling pathway. The L-type channel modulation was blocked by disruption of Gαq signaling or by inhibition of phospholipase Cβ. Antagonism of intracellular inositol trisphosphate signaling, chelation of intracellular Ca2+, or depletion of intracellular Ca2+ stores also blocked this modulation. Inhibition of the Ca2+-dependent phosphatase calcineurin prevented receptor-mediated modulation of L-type currents. Last, the 5-HT2 receptor modulation was robustly expressed in neurons from Cav1.3 knockout mice. These findings argue that 5-HT2receptors couple through Gαq proteins to trigger a phospholipase Cβ/inositol trisphosphate signaling cascade resulting in the mobilization of intracellular Ca2+, activation of calcineurin, and inhibition of Cav1.2 L-type Ca2+currents. This modulation and its blockade by atypical neuroleptics could have wide-ranging effects on synaptic integration and long-term gene expression in deep-layer prefrontal pyramidal neurons.


2010 ◽  
Vol 103 (6) ◽  
pp. 3070-3083 ◽  
Author(s):  
Rishikesh Narayanan ◽  
Sumantra Chattarji

Dendritic atrophy and impaired long-term synaptic potentiation (LTP) are hallmarks of chronic stress-induced plasticity in the hippocampus. It has been hypothesized that these disparate structural and physiological correlates of stress lead to hippocampal dysfunction by reducing postsynaptic dendritic surface, thereby adversely affecting the availability of synaptic inputs and suppressing LTP. Here we examine the validity of this framework using biophysical models of hippocampal CA3 pyramidal neurons. To statistically match with the experimentally observed region specificity of stress-induced atrophy, we use an algorithm to systematically prune three-dimensional reconstructions of CA3 pyramidal neurons. Using this algorithm, we build a biophysically realistic computational model to analyze the effects of stress on intrinsic and synaptic excitability. We find that stress-induced atrophy of CA3 dendrites leads to an increase in input resistance, which depends exponentially on the percentage of neuronal atrophy. This increase translates directly into higher spiking frequencies in response to both somatic current injections and synaptic inputs at various locations along the dendritic arbor. Remarkably, we also find that the dendritic regions that manifest atrophy-induced synaptic hyperexcitability are governed by the region specificity of the underlying dendritic atrophy. Coupled with experimentally observed modulation of N-methyl-d-aspartate receptor currents, such hyperexcitability could tilt the balance of plasticity mechanisms in favor of synaptic potentiation over depression. Thus paradoxically, our results suggest that stress may impair hippocampal learning and memory, not by directly inhibiting LTP, but because of stress-induced facilitation of intrinsic and synaptic excitability and the consequent imbalance in bidirectional synaptic plasticity.


Sign in / Sign up

Export Citation Format

Share Document