Dual Effect of Doxazosin: Anticancer Activity on SH-SY5Y Neuroblastoma Cells and Neuroprotection on an In Vitro Model of Alzheimer's Disease

Neuroscience ◽  
2019 ◽  
Vol 404 ◽  
pp. 314-325 ◽  
Author(s):  
Bárbara Paranhos Coelho ◽  
Mariana Maier Gaelzer ◽  
Fernanda dos Santos Petry ◽  
Juliana Bender Hoppe ◽  
Vera Maria Treis Trindade ◽  
...  
2021 ◽  
Vol 43 (1) ◽  
pp. 197-214
Author(s):  
Serena Silvestro ◽  
Luigi Chiricosta ◽  
Agnese Gugliandolo ◽  
Renato Iori ◽  
Patrick Rollin ◽  
...  

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and represents the most common form of senile dementia. Autophagy and mitophagy are cellular processes that play a key role in the aggregation of β-amyloid (Aβ) and tau phosphorylation. As a consequence, impairment of these processes leads to the progression of AD. Thus, interest is growing in the search for new natural compounds, such as Moringin (MOR), with neuroprotective, anti-amyloidogenic, antioxidative, and anti-inflammatory properties that could be used for AD prevention. However, MOR appears to be poorly soluble and stable in water. To increase its solubility MOR was conjugated with α-cyclodextrin (MOR/α-CD). In this work, it was evaluated if MOR/α-CD pretreatment was able to exert neuroprotective effects in an AD in vitro model through the evaluation of the transcriptional profile by next-generation sequencing (NGS). To induce the AD model, retinoic acid-differentiated SH-SY5Y cells were exposed to Aβ1-42. The MOR/α-CD pretreatment reduced the expression of the genes which encode proteins involved in senescence, autophagy, and mitophagy processes. Additionally, MOR/α-CD was able to induce neuronal remodeling modulating the axon guidance, principally downregulating the Slit/Robo signaling pathway. Noteworthy, MOR/α-CD, modulating these important pathways, may induce neuronal protection against Aβ1-42 toxicity as demonstrated also by the reduction of cleaved caspase 3. These data indicated that MOR/α-CD could attenuate the progression of the disease and promote neuronal repair.


2009 ◽  
Vol 17 (3) ◽  
pp. 503-517 ◽  
Author(s):  
Ana Catarina R.G. Fonseca ◽  
Teresa Proença ◽  
Rosa Resende ◽  
Catarina R. Oliveira ◽  
Cláudia M.F. Pereira

2019 ◽  
Vol 9 (8) ◽  
pp. 196 ◽  
Author(s):  
Agnese Gugliandolo ◽  
Luigi Chiricosta ◽  
Serena Silvestro ◽  
Placido Bramanti ◽  
Emanuela Mazzon

Alzheimer’s disease (AD) is the most common form of dementia worldwide. The hallmarks of AD are the extracellular amyloid plaques, which are formed by amyloid β (Aβ) aggregates derived from the processing of the amyloid precursor protein (APP), and the intraneuronal neurofibrillary tangles, which are formed by the hyperphosphorylated tau protein. The aim of this work was to study the effects of α-tocopherol in retinoic acid differentiated SH-SY5Y neuroblastoma cells exposed to Aβ1-42 evaluating the transcriptional profile by next-generation sequencing. We observed that α-tocopherol was able to reduce the cytotoxicity induced by Aβ treatment, as demonstrated by Thiazolyl Blue Tetrazolium Bromide (MTT) assay. Moreover, the transcriptomic analysis evidenced that α-tocopherol treatment upregulated genes involved in the non-amyloidogenic processing of APP, while it downregulated the amyloidogenic pathway. Moreover, α-tocopherol modulated the expression of the genes involved in autophagy and the cell cycle, which are both known to be altered in AD. The treatment with α-tocopherol was also able to reduce oxidative stress, restoring nuclear factor erythroid-derived 2-like 2 (Nrf2) and decreasing inducible nitric oxide synthase (iNOS) levels, as demonstrated by immunocytochemistry.


Sign in / Sign up

Export Citation Format

Share Document