High-fat Feeding Causes Inflammation and Insulin Resistance in the Ventral Tegmental Area in Mice

Neuroscience ◽  
2021 ◽  
Vol 461 ◽  
pp. 72-79
Author(s):  
Akira Mizoguchi ◽  
Ryoichi Banno ◽  
Runan Sun ◽  
Hiroshi Yaginuma ◽  
Keigo Taki ◽  
...  
2016 ◽  
Vol 310 (9) ◽  
pp. F812-F820 ◽  
Author(s):  
Jonathan M. Nizar ◽  
Wuxing Dong ◽  
Robert B. McClellan ◽  
Mariana Labarca ◽  
Yuehan Zhou ◽  
...  

The majority of patients with obesity, insulin resistance, and metabolic syndrome have hypertension, but the mechanisms of hypertension are poorly understood. In these patients, impaired sodium excretion is critical for the genesis of Na+-sensitive hypertension, and prior studies have proposed a role for the epithelial Na+ channel (ENaC) in this syndrome. We characterized high fat-fed mice as a model in which to study the contribution of ENaC-mediated Na+ reabsorption in obesity and insulin resistance. High fat-fed mice demonstrated impaired Na+ excretion and elevated blood pressure, which was significantly higher on a high-Na+ diet compared with low fat-fed control mice. However, high fat-fed mice had no increase in ENaC activity as measured by Na+ transport across microperfused cortical collecting ducts, electrolyte excretion, or blood pressure. In addition, we found no difference in endogenous urinary aldosterone excretion between groups on a normal or high-Na+ diet. High fat-fed mice provide a model of metabolic syndrome, recapitulating obesity, insulin resistance, impaired natriuresis, and a Na+-sensitive elevation in blood pressure. Surprisingly, in contrast to previous studies, our data demonstrate that high fat feeding of mice impairs natriuresis and produces elevated blood pressure that is independent of ENaC activity and likely caused by increased Na+ reabsorption upstream of the aldosterone-sensitive distal nephron.


2011 ◽  
Vol 43 (8) ◽  
pp. 408-416 ◽  
Author(s):  
Isabel Rubio-Aliaga ◽  
Baukje de Roos ◽  
Manuela Sailer ◽  
Gerard A. McLoughlin ◽  
Mark V. Boekschoten ◽  
...  

Obesity frequently leads to insulin resistance and the development of hepatic steatosis. To characterize the molecular changes that promote hepatic steatosis, transcriptomics, proteomics, and metabolomics technologies were applied to liver samples from C57BL/6J mice obtained from two independent intervention trials. After 12 wk of high-fat feeding the animals became obese, hyperglycemic, and insulin resistant, had elevated levels of blood cholesterol and VLDL, and developed hepatic steatosis. Nutrigenomic analysis revealed alterations of key metabolites and enzyme transcript levels of hepatic one-carbon metabolism and related pathways. The hepatic oxidative capacity and the lipid milieu were significantly altered, which may play a key role in the development of insulin resistance. Additionally, high choline levels were observed after the high-fat diet. Previous studies have linked choline levels with insulin resistance and hepatic steatosis in conjunction with changes of certain metabolites and enzyme levels of one-carbon metabolism. The present results suggest that the coupling of high levels of choline and low levels of methionine plays an important role in the development of insulin resistance and liver steatosis. In conclusion, the complexities of the alterations induced by high-fat feeding are multifactorial, indicating that the interplay between several metabolic pathways is responsible for the pathological consequences.


2014 ◽  
Vol 35 (1) ◽  
pp. 26-40 ◽  
Author(s):  
Ahmed Lawan ◽  
Lei Zhang ◽  
Florian Gatzke ◽  
Kisuk Min ◽  
Michael J. Jurczak ◽  
...  

The liver plays a critical role in glucose metabolism and communicates with peripheral tissues to maintain energy homeostasis. Obesity and insulin resistance are highly associated with nonalcoholic fatty liver disease (NAFLD). However, the precise molecular details of NAFLD remain incomplete. The p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) regulate liver metabolism. However, the physiological contribution of MAPK phosphatase 1 (MKP-1) as a nuclear antagonist of both p38 MAPK and JNK in the liver is unknown. Here we show that hepatic MKP-1 becomes overexpressed following high-fat feeding. Liver-specific deletion of MKP-1 enhances gluconeogenesis and causes hepatic insulin resistance in chow-fed mice while selectively conferring protection from hepatosteatosis upon high-fat feeding. Further, hepatic MKP-1 regulates both interleukin-6 (IL-6) and fibroblast growth factor 21 (FGF21). Mice lacking hepatic MKP-1 exhibit reduced circulating IL-6 and FGF21 levels that were associated with impaired skeletal muscle mitochondrial oxidation and susceptibility to diet-induced obesity. Hence, hepatic MKP-1 serves as a selective regulator of MAPK-dependent signals that contributes to the maintenance of glucose homeostasis and peripheral tissue energy balance. These results also demonstrate that hepatic MKP-1 overexpression in obesity is causally linked to the promotion of hepatosteatosis.


2016 ◽  
Vol 291 (33) ◽  
pp. 17066-17076 ◽  
Author(s):  
Carrie M. Elks ◽  
Peng Zhao ◽  
Ryan W. Grant ◽  
Hardy Hang ◽  
Jennifer L. Bailey ◽  
...  

Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMRFKO mice). The effects of OSM on gene expression were also assessed in vitro and in vivo. OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMRFKO mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMRFKO mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c. Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMRFKO mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation.


2010 ◽  
Vol 298 (2) ◽  
pp. E304-E319 ◽  
Author(s):  
Vicent Ribas ◽  
M. T. Audrey Nguyen ◽  
Darren C. Henstridge ◽  
Anh-Khoi Nguyen ◽  
Simon W. Beaven ◽  
...  

Impaired estrogen action is associated with the metabolic syndrome in humans. We sought to determine whether impaired estrogen action in female C57Bl6 mice, produced by whole body Esr1 ablation, could recapitulate aspects of this syndrome, including inflammation, insulin resistance, and obesity. Indeed, we found that global knockout (KO) of the estrogen receptor (ER)α leads to reduced oxygen uptake and caloric expenditure compared with wild-type (WT) mice. In addition, fasting insulin, leptin, and PAI-1 levels were markedly elevated, whereas adiponectin levels were reduced in normal chow-fed KO. Furthermore, ERα-KO mice exhibited impaired glucose tolerance and marked skeletal muscle insulin resistance that was accompanied by the accumulation of bioactive lipid intermediates, inflammation, and diminished PPARα, PPARδ, and UCP2 transcript levels. Although the relative glucose intolerance and insulin resistance phenotype in KO mice became more severe with high-fat feeding, WT mice were refractory to these dietary-induced effects, and this protection coincided with a marked increase in circulating adiponectin and heat shock protein 72 levels in muscle, liver, and fat. These data indicate that ERα is critical for the maintenance of whole body insulin action and protection against tissue inflammation during both normal chow and high-fat feeding.


Metabolism ◽  
1989 ◽  
Vol 38 (11) ◽  
pp. 1089-1093 ◽  
Author(s):  
E.W. Kraegen ◽  
D.E. James ◽  
A.B. Jenkins ◽  
D.J. Chisholm ◽  
L.H. Storlien

2009 ◽  
Vol 297 (2) ◽  
pp. G378-G384 ◽  
Author(s):  
Sean W. P. Koppe ◽  
Marc Elias ◽  
Richard H. Moseley ◽  
Richard M. Green

Diets high in trans fats are associated with an increased risk of cardiovascular disease and components of the metabolic syndrome. The influence of these toxic fatty acids on the development of nonalcoholic fatty liver disease has not been significantly examined. Therefore, we sought to compare the effect of a murine diet high in trans fat to a standard high-fat diet that is devoid of trans fats but high in saturated fats. Male AKR/J mice were fed a calorically identical trans fat diet or standard high-fat diet for 10 days, 4 wk, and 8 wk. Serum alanine aminotransferase (ALT), lipid, insulin, and leptin levels were determined and the quantitative insulin-sensitivity check index (QUICKI) was calculated as a measure of insulin resistance. Additionally, hepatic triglyceride content and gene expression of several proinflammatory genes were assessed. By 8 wk, trans fat-fed mice exhibited higher ALT values than standard high-fat-fed mice (126 ± 16 vs. 71 ± 7 U/l, P < 0.02) despite similar hepatic triglyceride content at each time point. Trans fat-fed mice also had increased insulin resistance compared with high-fat-fed mice at 4 and 8 wk with significantly higher insulin levels and lower QUICKI values. Additionally, hepatic interleukin-1β (IL-1β) gene expression was 3.6-fold higher at 4 wk ( P < 0.05) and 5-fold higher at 8 wk ( P < 0.05) in trans fat-fed mice compared with standard high-fat-fed mice. Trans fat feeding results in higher ALT values, increased insulin resistance, and elevated IL-1β levels compared with standard high-fat feeding.


Sign in / Sign up

Export Citation Format

Share Document