scholarly journals The Chandra deep fields: Lifting the veil on distant active galactic nuclei and X-ray emitting galaxies

2017 ◽  
Vol 79 ◽  
pp. 59-84 ◽  
Author(s):  
Y.Q. Xue
2020 ◽  
Vol 642 ◽  
pp. A184
Author(s):  
S. Marchesi ◽  
R. Gilli ◽  
G. Lanzuisi ◽  
T. Dauser ◽  
S. Ettori ◽  
...  

We present a series of new, publicly available mock catalogs of X-ray selected active galactic nuclei (AGNs), nonactive galaxies, and clusters of galaxies. These mocks are based on up-to-date observational results on the demographic of extragalactic X-ray sources and their extrapolations. They reach fluxes below 10−20 erg cm−2 s−1 in the 0.5–2 keV band, that is, more than an order of magnitude below the predicted limits of future deep fields, and they therefore represent an important tool for simulating extragalactic X-ray surveys with both current and future telescopes. We used our mocks to perform a set of end-to-end simulations of X-ray surveys with the forthcoming ATHENA mission and with the AXIS probe, a subarcsecond resolution X-ray mission concept proposed to the Astro 2020 Decadal Survey. We find that these proposed, next generation surveys may transform our knowledge of the deep X-ray Universe. As an example, in a total observing time of 15 Ms, AXIS would detect ∼225 000 AGNs and ∼50 000 nonactive galaxies, reaching a flux limit of f0.5−2 ∼ 5 × 10−19 erg cm−2 s−1 in the 0.5–2 keV band, with an improvement of over an order of magnitude with respect to surveys with current X-ray facilities. Consequently, 90% of these sources would be detected for the first time in the X-rays. Furthermore, we show that deep and wide X-ray surveys with instruments such as AXIS and ATHENA are expected to detect ∼20 000 z > 3 AGNs and ∼250 sources at redshift z > 6, thus opening a new window of knowledge on the evolution of AGNs over cosmic time and putting strong constraints on the predictions of theoretical models of black hole seed accretion in the early universe.


2011 ◽  
Vol 736 (1) ◽  
pp. 56 ◽  
Author(s):  
D. R. Ballantyne ◽  
A. R. Draper ◽  
K. K. Madsen ◽  
J. R. Rigby ◽  
E. Treister

1997 ◽  
Vol 487 (1) ◽  
pp. 142-152 ◽  
Author(s):  
Gang Bao ◽  
Petr Hadrava ◽  
Paul J. Wiita ◽  
Ying Xiong

Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Yoshiyuki Inoue ◽  
Dmitry Khangulyan ◽  
Akihiro Doi

To explain the X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts have established the existence of weak non-thermal coronal activity. In addition, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10 yr survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current observational understanding of AGN coronae and describes how AGN coronae generate high-energy particles. We also provide ways to test the AGN corona model with radio, X-ray, MeV gamma ray, and high-energy neutrino observations.


2020 ◽  
Vol 499 (4) ◽  
pp. 5163-5174
Author(s):  
A Juráňová ◽  
N Werner ◽  
P E J Nulsen ◽  
M Gaspari ◽  
K Lakhchaura ◽  
...  

ABSTRACT X-ray emitting atmospheres of non-rotating early-type galaxies and their connection to central active galactic nuclei have been thoroughly studied over the years. However, in systems with significant angular momentum, processes of heating and cooling are likely to proceed differently. We present an analysis of the hot atmospheres of six lenticulars and a spiral galaxy to study the effects of angular momentum on the hot gas properties. We find an alignment between the hot gas and the stellar distribution, with the ellipticity of the X-ray emission generally lower than that of the optical stellar emission, consistent with theoretical predictions for rotationally supported hot atmospheres. The entropy profiles of NGC 4382 and the massive spiral galaxy NGC 1961 are significantly shallower than the entropy distribution in other galaxies, suggesting the presence of strong heating (via outflows or compressional) in the central regions of these systems. Finally, we investigate the thermal (in)stability of the hot atmospheres via criteria such as the TI- and C-ratio, and discuss the possibility that the discs of cold gas present in these objects have condensed out of the hot atmospheres.


2006 ◽  
Vol 651 (2) ◽  
pp. 749-766 ◽  
Author(s):  
Iskra V. Strateva ◽  
W. N. Brandt ◽  
Michael Eracleous ◽  
Donald P. Schneider ◽  
George Chartas

2013 ◽  
Vol 553 ◽  
pp. A29 ◽  
Author(s):  
C. Ricci ◽  
S. Paltani ◽  
H. Awaki ◽  
P.-O. Petrucci ◽  
Y. Ueda ◽  
...  

1998 ◽  
Vol 500 (2) ◽  
pp. 642-659 ◽  
Author(s):  
Kiyoshi Hayashida ◽  
Sigenori Miyamoto ◽  
Shunji Kitamoto ◽  
Hitoshi Negoro ◽  
Hajime Inoue

2010 ◽  
Vol 710 (1) ◽  
pp. 503-539 ◽  
Author(s):  
Lisa M. Winter ◽  
Karen T. Lewis ◽  
Michael Koss ◽  
Sylvain Veilleux ◽  
Brian Keeney ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document