scholarly journals Mechanisms and prevention & control countermeasures of water breakthrough in horizontal wells in multi-layer unconsolidated sandstone gas reservoirs: A case study of the Tainan Gas Field in the Qaidam Basin

2019 ◽  
Vol 6 (6) ◽  
pp. 564-571
Author(s):  
Yun Yang ◽  
Duanyang Gu ◽  
Yunxiao Lian ◽  
Guoliang Liu ◽  
Shengmei Han ◽  
...  
2011 ◽  
Vol 201-203 ◽  
pp. 393-398
Author(s):  
Wei Yao Zhu ◽  
Xiao He Huang ◽  
Hong Qing Song ◽  
Jia Deng ◽  
Xuan Liu

Based on the theory of porous flow, a study on prediction of water breakthrough time of horizontal wells in a homogeneous gas reservoir with bottom water is presented. This paper derives water breakthrough time formula of horizontal wells in a reservoir with bottom water drive. In the formula many factors are taken into account, such as height of water avoidance, gas-water mobility ratio, irreducible water saturation, residual gas saturation, etc. Case study indicates that for a horizontal gas well with constant production rate, the water breakthrough time is proportional to the height of water avoidance.


2020 ◽  
Vol 213 ◽  
pp. 02009
Author(s):  
Quan Hua Huang ◽  
Xing Yu Lin

Horizontal Wells are often used to develop condensate gas reservoirs. When there is edge water in the gas reservoir, it will have a negative impact on the production of natural gas. Therefore, reasonable prediction of its water breakthrough time is of great significance for the efficient development of condensate gas reservoirs.At present, the prediction model of water breakthrough time in horizontal Wells of condensate gas reservoir is not perfect, and there are mainly problems such as incomplete consideration of retrograde condensate pollution and inaccurate determination of horizontal well seepage model. Based on the ellipsoidal horizontal well seepage model, considering the advance of edge water to the bottom of the well and condensate oil to formation, the advance of edge water is divided into two processes. The time when the first water molecule reaches the bottom of the well when the edge water tongue enters is deduced, that is, the time of edge water breakthrough in condensate gas reservoir.The calculation results show that the relative error of water breakthrough time considering retrograde condensate pollution is less than that without consideration, with a higher accuracy. The example error is less than 2%, which can be effectively applied to the development of edge water gas reservoir.


2021 ◽  
Vol 40 (11) ◽  
pp. 805-814
Author(s):  
Michał Kępiński ◽  
Pramit Basu ◽  
David Wiprut ◽  
Marek Koprianiuk

This paper presents a shale gas field geomechanics case study in the Peri-Baltic Syneclise (northern Poland). Polish Oil and Gas Company drilled a vertical well, W-1, and stimulated the Silurian target. Next, a horizontal well, W-2H, drilled the Ordovician target and partially collapsed. The remaining interval was stimulated, and microseismic monitoring was performed. A second horizontal well, W-3H, was drilled at the same azimuth as W-2H, but the well collapsed in the upper horizontal section (Silurian). A geomechanical earth model was constructed that matches the drilling experiences and well failure observations found in wells W-1, W-2H, and W-3H. The field was found to be in a strike-slip faulting stress regime, heavily fractured, with weak bedding contributing to the observed drilling problems. An analysis of safe mud weights, optimal casing setting depths, and optimal drilling directions was carried out for a planned well, W-4H. Specific recommendations are made to further enhance the model in any future studies. These recommendations include data acquisition and best practices for the planned well.


Sign in / Sign up

Export Citation Format

Share Document