scholarly journals Identification of photons in double beta-decay experiments using segmented germanium detectors—Studies with a GERDA phase II prototype detector

Author(s):  
I. Abt ◽  
A. Caldwell ◽  
K. Kröninger ◽  
J. Liu ◽  
X. Liu ◽  
...  
2018 ◽  
Vol 33 (09) ◽  
pp. 1843004 ◽  
Author(s):  
◽  
M. Agostini ◽  
A. M. Bakalyarov ◽  
M. Balata ◽  
I. Barabanov ◽  
...  

The GERmanium Detector Array (GERDA) is a low background experiment at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN designed to search for the rare neutrinoless double beta decay ([Formula: see text]) of [Formula: see text]Ge. In the first phase (Phase I) of the experiment, high purity germanium diodes were operated in a “bare” mode and immersed in liquid argon. The overall background level of [Formula: see text] was a factor of ten better than those of its predecessors. No signal was found and a lower limit was set on the half-life for the [Formula: see text] decay of [Formula: see text]Ge [Formula: see text] yr (90% CL), while the corresponding median sensitivity was [Formula: see text] yr (90% CL). A second phase (Phase II) started at the end of 2015 after a major upgrade. Thanks to the increased detector mass and performance of the enriched germanium diodes and due to the introduction of liquid argon instrumentation techniques, it was possible to reduce the background down to [Formula: see text]. After analyzing 23.2 kg[Formula: see text]⋅[Formula: see text]yr of these new data no signal was seen. Combining these with the data from Phase I a stronger half-life limit of the [Formula: see text]Ge [Formula: see text] decay was obtained: [Formula: see text] yr (90% CL), reaching a sensitivity of [Formula: see text] yr (90% CL). Phase II will continue for the collection of an exposure of 100 kg[Formula: see text]yr. If no signal is found by then the GERDA sensitivity will have reached [Formula: see text] yr for setting a 90% CL. limit. After the end of GERDA Phase II, the flagship experiment for the search of [Formula: see text] decay of [Formula: see text]Ge will be LEGEND. LEGEND experiment is foreseen to deploy up to 1-ton of [Formula: see text]Ge. After ten years of data taking, it will reach a sensitivity beyond 10[Formula: see text] yr, and hence fully cover the inverted hierarchy region.


2017 ◽  
Author(s):  
Jozsef Janicsko ◽  
M. Agostini ◽  
M. Allardt ◽  
A.M Bakalyarov ◽  
M. Balata ◽  
...  

2017 ◽  
Author(s):  
M. Agostini ◽  
A. M. Bakalyarov ◽  
M. Balata ◽  
I. Barabanov ◽  
L. Baudis ◽  
...  

Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 314
Author(s):  
Carla Maria Cattadori ◽  
Francesco Salamida

The Gerda (GERmanium Detector Array) project, located at Laboratori Nazionali del Gran Sasso (LNGS), was started in 2005, a few years after the claim of evidence for the neutrinoless double beta decay (0νββ) of 76Ge to the ground state of 76Se: it is an ultra-rare process whose detection would directly establish the Majorana nature of the neutrino and provide a measurement of its mass and mass hierarchy. The aim of Gerda was to confirm or disprove the claim by an increased sensitivity experiment. After establishing the new technology of Ge detectors operated bare in liquid Argon and since 2011, Gerda efficiently collected data searching for 0νββ of 76Ge, first deploying the 76Ge-enriched detectors from two former experiments and later new detectors with enhanced signal-to-background rejection, produced from freshly 76Ge-enriched material. Since then, the Gerda setup has been upgraded twice, first in 2013–2015 and later in 2018. The period before 2013 is Phase I and that after 2015 is Phase II. Both the Gerda setup and the analysis tools evolved along the project lifetime, allowing to achieve the remarkable average energy resolution of ∼3.6 and ∼2.6 keV for Coaxial Germanium (Coax) detectors and for Broad Energy Germanium (BEGe), respectively, and the background index of 5.2−1.3+1.6 · 10−4 cts/(keV·kg·yr) in a 230 keV net range centered at Qββ. No evidence of the 0νββ decay at Qββ = 2039.1 keV has been found, hence the limit of 1.8·1026 yr on the half-life (T1/20ν) at 90% C.L. was set with the exposure of 127.2 kg·yr. The corresponding limit range for the effective Majorana neutrino mass mee has been set to 79–180 meV. The Gerda performances in terms of background index, energy resolution and exposure are the best achieved so far by 76Ge double beta decay experiments. In Phase II, Gerda succeeded in operating in a background free regime and set a world record. In 2017, the Legend Collaboration was born from the merging of the Gerda and Majorana Collaborations and resources with the aim to further improve the Gerda sensitivity. First, the Legend200 project, with a mass of up to 200 kg of 76Ge-enriched detectors, aims to further improve the background index down to <0.6 · 10−3 cts/(keV·kg·yr) to explore the Inverted Hierarchy region of the neutrino mass ordering, then the Legend1000 (1 ton of 76Ge-enriched) will probe the Normal Hierarchy. In this paper, we describe the Gerda experiment, its evolution, the data analysis flow, a selection of its results and technological achievements, and finally the design, features and challenges of Legend, the Gerda prosecutor.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Tommaso Comellato ◽  
Matteo Agostini ◽  
Stefan Schönert

AbstractThe time analysis of the signal induced by the drift of charge carriers in high purity germanium detectors provides information on the event topology. Millions of charge carriers are produced in a typical event. Their initial distribution, stochastic diffusion and Coulomb self-repulsion affect the time structure of the signal. We present a comprehensive study of these effects and evaluate their impact on the event discrimination capabilities for the three geometries which will be used in the Legend experiment for neutrinoless double-beta decay.


Sign in / Sign up

Export Citation Format

Share Document