scholarly journals Radio emission of air showers with extremely high energy measured by the Yakutsk Radio Array

Author(s):  
S.P. Knurenko ◽  
Z.E. Petrov ◽  
I.S. Petrov
2019 ◽  
Vol 216 ◽  
pp. 02012
Author(s):  
T. Marshalkina ◽  
P.A. Bezyazeekov ◽  
N.M. Budnev ◽  
D. Chernykh ◽  
O. Fedorov ◽  
...  

The Tunka Radio Extension (Tunka-Rex) is a digital antenna array for the detection of radio emission from cosmic-ray air showers in the frequency band of 30 to 80 MHz and for primary energies above 100 PeV. The standard analysis of Tunka-Rex includes events with zenith angle of up to 50?. This cut is determined by the efficiency of the external trigger. However, due to the air-shower footprint increasing with zenith angle and due to the more efficient generation of radio emission (the magnetic field in the Tunka valley is almost vertical), there are a number of ultra-high-energy inclined events detected by Tunka-Rex. In this work we present a first analysis of a subset of inclined events detected by Tunka-Rex. We estimate the energies of the selected events and test the efficiency of Tunka-Rex antennas for detection of inclined air showers.


2019 ◽  
Vol 216 ◽  
pp. 01009
Author(s):  
Abigail Vieregg

We summarize results from the third flight of the Antarctic Impulsive Transient Antenna (ANITA), a NASA long-duration balloon payload that searches for radio emission from the interactions of ultra-high-energy neutrinos and cosmic rays. ANITAIII was launched in December 2014 and flew for 22 days. We report the results from multipleanalyses of the data, which search for Askaryan radio emission from neutrinos interacting in the Antarctic ice as well as geomagnetic radio emission from extensive air showers (EASs) induced by cosmic rays or a tau lepton created in an in-earth tau neutrino interaction. In the most sensitive Askaryan neutrino search, we find one eventon a pre-unblinding background of 0:7−0:3+0.5. Across all searches, including a dedicated EAS search, we find a total of 28 EAS-like events. One of these events is consistent with an upward-traveling EAS, with a post-unblinding background estimate of ⪷10−2.


2013 ◽  
Vol 53 (A) ◽  
pp. 825-828 ◽  
Author(s):  
Klaus Weidenhaupt

The Auger Engineering Radio Array currently measures MHz radio emission from extensive air showers induced by high energy cosmic rays with 24 self-triggered radio detector stations. Its unique site, embedded into the baseline detectors and extensions of the Pierre Auger Observatory, allows to study air showers in great detail and to calibrate the radio emission. In its final stage AERA will expand to an area of approximately 20km<sup>2</sup> to explore the feasibility of the radio-detection technique for future cosmic-ray detectors. The concept and hardware design of AERA as well as strategies to enable self-triggered radio detection are presented. Radio emission mechanisms are discussed based on polarization analysis of the first AERA data.


2006 ◽  
Vol 21 (supp01) ◽  
pp. 187-191 ◽  
Author(s):  
S. NEHLS ◽  
W. D. APEL ◽  
F. BADEA ◽  
L. BÄHREN ◽  
K. BEKK ◽  
...  

Radio emission in extensive air showers arises from an interaction with the geomagnetic field and is subject of theoretical studies. This radio emission has advantages for the detection of high energy cosmic rays compared to secondary particle or fluorescence measurement methods. Radio antennas like the LOPES30 antenna system are suited to investigate this emission process by detecting the radio pulses. The characteristic observable parameters like electric field strength and pulse length require a calibration which was done with a reference radio source resulting in an amplification factor representing the system behavior in the environment of the KASCADE-Grande experiment. Knowing the amplification factor and the gain of the LOPES antennas LOPES30 is calibrated absolutely for systematic analyses of the radio emission.


Sign in / Sign up

Export Citation Format

Share Document