scholarly journals Total cross sections for ionizing processes induced by proton impact on molecules of biological interest: A classical trajectory Monte Carlo approach

Author(s):  
H. Lekadir ◽  
I. Abbas ◽  
C. Champion ◽  
J. Hanssen
2021 ◽  
Vol 75 (4) ◽  
Author(s):  
Iman Ziaeian ◽  
Károly Tőkési

Abstract A three-body classical trajectory Monte Carlo method is used to calculate the nl state-selective charge exchange cross sections in $$\hbox {Be}^{\mathrm {4+}}+$$ Be 4 + + H(2lm) collisions in the energy range between 10 and 200 keV/amu. We present partial cross sections for charge exchange into $$\hbox {Be}^{\mathrm {3+}}$$ Be 3 + (nl) $$(\textit{nl} = 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f)$$ ( nl = 2 s , 2 p , 3 s , 3 p , 3 d , 4 s , 4 p , 4 d , 4 f ) states as a function of impact energy. Our results are compared with the previous classical and quantum-mechanical results. We show that the classical treatment can able to describe reasonably well the charge exchange cross sections. Graphic abstract


Atoms ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 27
Author(s):  
I. Ziaeian ◽  
K. Tőkési

The interaction between Be4+ and hydrogen atom is studied using the three-body classical trajectory Monte Carlo method (CTMC) and the quasiclassical trajectory Monte Carlo method of Kirschbaum and Wilets (QTMC-KW). We present total cross sections for target ionization, target excitation, and charge exchange to the projectile bound states. Calculations are carried out in the projectile energy range between 10 and 1000 keV/au, relevant to the interest of fusion research when the target hydrogen atom is in the ground state. Our results are compared with previous theoretical results. We found that the classical treatment describes reasonably well the cross sections for various final channels. Moreover, we show that the calculations by the QTMC-KW model significantly improve the obtained cross sections.


Atoms ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 31
Author(s):  
Saed J. Al Atawneh ◽  
Örs Asztalos ◽  
Borbála Szondy ◽  
Gergő I. Pokol ◽  
Károly Tőkési

The interaction between two ground state hydrogen atoms in a collision was studied using the four-body classical trajectory Monte Carlo method. We present the total cross sections for the dominant channels, namely for the single ionization of the target, the ionization of the projectile, resulting from pure ionization, and also from the electron transfer (capture or loss) processes. We also present cross sections for the complete break of the system, resulting in the final channel for four free particles. The calculations were carried out at low energies, relevant to the interest of fusion research. We present our cross sections in the projectile energy range between 2.0 keV and 100 keV and compare them with previously obtained theoretical and experimental results.


Sign in / Sign up

Export Citation Format

Share Document