scholarly journals Altitude distribution of electron concentration in ionospheric D-region in presence of time-varying solar radiation flux

Author(s):  
A. Nina ◽  
V. Čadež ◽  
V. Srećković ◽  
D. Šulić
2018 ◽  
Vol 137 (1-2) ◽  
pp. 693-712 ◽  
Author(s):  
Sungwon Kim ◽  
Youngmin Seo ◽  
Mohammad Rezaie-Balf ◽  
Ozgur Kisi ◽  
Mohammad Ali Ghorbani ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4716 ◽  
Author(s):  
Ahmed Abdel-Ghany ◽  
Ibrahim Al-Helal ◽  
Fahad Alkoaik ◽  
Abdullah Alsadon ◽  
Mohamed Shady ◽  
...  

Shading greenhouses in a hot and sunny climate is essential to reduce the inside greenhouse air temperature. However, the type and location of nets need to be addressed properly to determine the shading method that provides a better cooling effect on the greenhouse air. This study was conducted to evaluate the effects of five different shading methods on greenhouse microclimates, and to investigate the cooling potential of each method. Four greenhouse models covered with 200-µm thick plastic film were used for the study: one was kept as control (C), one was whitened with slaked lime (L), and two were shaded with white and black nets (50% shading factor) deployed simultaneously at two locations, in contact (WC, BC) and at 20-cm distance from the cladding film (WD, BD). The microclimatic parameters were measured inside and outside the greenhouse models, and the cooling potential (CP) was predicted for each shading method. The results showed that the black net at 20-cm distance (BD) is desirable as it provides high CP with a reasonable solar radiation transmission. The maximum CP was estimated as 8.5 °C, 8 °C, 6 °C, 3.2 °C, and 2.1 °C for L, BD, BC, WD, and WC, respectively. Shading with white nets is not recommended because their cooling potential is very low. Based on these results, we developed correlations for predicting the CP for each shading method as a function of the transmitted solar radiation flux (Si). These correlations depend on Si. Accordingly, they can be used for small greenhouses, whitewashed with a slaked lime of any concentration, or shaded with a black net having any shading factor.


2009 ◽  
Vol 46 (2) ◽  
Author(s):  
C. Tomasi ◽  
V. Vitale ◽  
A. Lupi ◽  
A. Cacciari ◽  
S. Marani ◽  
...  

2020 ◽  
Author(s):  
Michael Danielides ◽  
Jaroslav Chum

<p>Earth's ionosphere is formed mainly due to solar radiation, precipitating particles and cosmic rays. Its behavior is directly dependent on solar variation and the change of solar activity through out each solar cycle. The solar activity is measured by the number of sunspots and the solar radiation flux expressed by the F10.7 index. The earlier variation in electron density from solar cycle maximum to solar cycle minimum has been noted by Hargreaves (1992). He utilized the F10.7 index as a proxy for Lyman- radiation flux, which ionizes at D-region heights mainly O<sub>2</sub> and N<sub>2</sub> also NO. Utilizing the IRI model the atmospheric densities of O<sub>2</sub> and N<sub>2</sub> are assumed to be constant, NO density is the unknown. Also, it is known that the ionospheric reflection height depends on, e.g. diurnal variations [Pal & Chakrabarti, 2010] and other sudden ionospheric disturbances. Its longer term variations are not well enough studied.</p><p>Utilizing passive VLF ground based measurements with data coverage for almost the entire solar cycle 24, we compare monthly averaged solar quiet absorption curves fitted by a cosine dependence. This cosine dependence includes fixed parameters based on geography and setup of the instrument. The variables are only the solar zenith angle and the D-region absorption. This approach offers an indirect value of NO density change.</p><p>For the present study we utilize VLF monitors, which are located in northern Germany and at Czech Republic. The latter station also offers data from ionospheric sounder and continuous Doppler sounding. A simple 1-D ionospheric model is applied to compute ionospheric electron densities for daytime conditions based on solar F10.7 radiation fluxes.</p><p>The aim of this study is a comparison of solar quiet VLF curves of the solar cycle 24 maximum and minimum. Beside the change of NO density, also the variation of height of the D-region reflective layer will be discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document