Effect of He ion irradiation on the microstructure of t′ phase yttria-stabilized zirconia ceramic coatings

Author(s):  
Bo Liu ◽  
Jianxiong Zou ◽  
Liwei Lin ◽  
Shanlin Wang ◽  
Yu Bai ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1677 ◽  
Author(s):  
Ningning Song ◽  
Ziyuan Wang ◽  
Yan Xing ◽  
Mengfei Zhang ◽  
Peng Wu ◽  
...  

Microscopical nonuniformity of mechanical properties caused by phase transformation is one of the main reasons for the failure of the materials in engineering applications. Accurate measurement of the mechanical properties of each phase is of virtual importance, in which the traditional approach like Vickers hardness cannot accomplish, due to the large testing range. In this study, nanoindentation is firstly used to analyze the mechanical properties of each phase and demonstrate the phase transformation in thermal barrier coatings during high-temperature aging. The distribution of T-prime metastable tetragonal phase, cubic and tetragonal phase is determined by mapping mode of nanoindentation and confirmed with X-ray diffraction and scanning electron microscope observation. The results show that during 1300 °C aging, the phase transition of metastable Yttria-Stabilized Zirconia induces the quick decrease of T′ phase content and an increase of T and C phases accordingly. It is found that there are some fluctuations in the mechanical properties of individual phase during annealing. The hardness and Young’s modulus of T′ increase at first 9 h, due to the precipitation of Y3+ lean T phase and then decrease to a constant value accompanied by the precipitation of Y3+ rich C phase. The relevant property of C phases also increases a little firstly and then decreases to a constant, due to the homogenization of Y3+ content, while the hardness and Young’s modulus of T phase remain unchanged. After aging of 24h the hardness of T′, C and T phases are 20.5 GPa, 21.3 GPa and 19.1 GPa, respectively. The Young’s modulus of T′, C and T phases are 274 GPa, 275 GPa and 265 GPa, respectively. Present work reveals the availability of nanoindentation method to demonstrate the phase transformation and measure mechanical properties of composites. It also provides an efficient application for single phase identification of ceramics.


2011 ◽  
Vol 11 (1) ◽  
pp. 166-174 ◽  
Author(s):  
Norio Wada ◽  
Miho Nakamura ◽  
Wei Wang ◽  
Tetsuo Hiyama ◽  
Akiko Nagai ◽  
...  

2001 ◽  
Vol 2001 (0) ◽  
pp. 81-82
Author(s):  
Chujie WAN ◽  
Yoshinobu MOTOHASHI ◽  
Taiju SHIBATA ◽  
Shinichi BABA ◽  
Masahiro ISHIHARA ◽  
...  

2019 ◽  
Vol 1 (1) ◽  
pp. 1-11
Author(s):  
Pasupuleti Kirti Teja ◽  
Parvati Ramaswamy ◽  
Narayana Murthy S.V.S.

Functionally graded layers in thermal barrier coatings reduce the stress gradient between the overlaid ceramic coatings and the underlying metallic component. Introduced to alleviate early onset of spallation of the coating due to thermal expansion mismatch, this facilitates improvement in the life of the component. Conventional thermal barrier coatings typically comprise of duplex layers of plasma sprayed 8% yttria stabilized zirconia (ceramic) coatings on bond coated (NiCrAlY) components/substrates (Inconel 718 for example). This work highlights the superiority of plasma sprayed coatings synthesized from blends of the intermetallic bond coat and ceramic plasma spray powders on Inconel 718 substrates in three-layer configuration over the duplex layered configuration. Assessed through (a) thermal shock cyclic tests (at 1200oC and 1400oC) in laboratory scale basic burner rig test facility and (b) oxidation stability test in high temperature furnace (at 800oC and 1000oC) the functionally graded coatings of certain configurations exhibited more than double the life of the conventional 8% yttria stabilized zirconia duplex (double layer) coatings. Micro- and crystal structure analysis support the findings and results are detailed and discussed.


Sign in / Sign up

Export Citation Format

Share Document