Radiocarbon measurement using a gas/solid hybrid ion source and an automated sample preparation system at the University of Tsukuba

Author(s):  
Tetsuya Matsunaka ◽  
Kimikazu Sasa ◽  
Seiji Hosoya ◽  
Hongtao Shen ◽  
Tsutomu Takahashi ◽  
...  
Radiocarbon ◽  
2014 ◽  
Vol 56 (02) ◽  
pp. 561-566 ◽  
Author(s):  
Sönke Szidat ◽  
Gary A Salazar ◽  
Edith Vogel ◽  
Michael Battaglia ◽  
Lukas Wacker ◽  
...  

The University of Bern has set up the new Laboratory for the Analysis of Radiocarbon with AMS (LARA) equipped with an accelerator mass spectrometer (AMS) MICADAS (MIni CArbon Dating System) to continue its long history of14C analysis based on conventional counting. The new laboratory is designated to provide routine14C dating for archaeology, climate research, and other disciplines at the University of Bern and to develop new analytical systems coupled to the gas ion source for14C analysis of specific compounds or compound classes with specific physical properties. Measurements of reference standards and wood samples dated by dendrochronology demonstrate the quality of the14C analyses performed at the new laboratory.


Radiocarbon ◽  
2014 ◽  
Vol 56 (2) ◽  
pp. 561-566 ◽  
Author(s):  
Sönke Szidat ◽  
Gary A Salazar ◽  
Edith Vogel ◽  
Michael Battaglia ◽  
Lukas Wacker ◽  
...  

The University of Bern has set up the new Laboratory for the Analysis of Radiocarbon with AMS (LARA) equipped with an accelerator mass spectrometer (AMS) MICADAS (MIni CArbon Dating System) to continue its long history of 14C analysis based on conventional counting. The new laboratory is designated to provide routine 14C dating for archaeology, climate research, and other disciplines at the University of Bern and to develop new analytical systems coupled to the gas ion source for 14C analysis of specific compounds or compound classes with specific physical properties. Measurements of reference standards and wood samples dated by dendrochronology demonstrate the quality of the 14C analyses performed at the new laboratory.


Radiocarbon ◽  
2021 ◽  
pp. 1-7
Author(s):  
Corina Solís ◽  
Efraín Chávez ◽  
Arcadio Huerta ◽  
María Esther Ortiz ◽  
Alberto Alcántara ◽  
...  

ABSTRACT Augusto Moreno is credited with establishing the first radiocarbon (14C) laboratory in Mexico in the 1950s, however, 14C measurement with the accelerator mass spectrometry (AMS) technique was not achieved in our country until 2003. Douglas Donahue from the University of Arizona, a pioneer in using AMS for 14C dating, participated in that experiment; then, the idea of establishing a 14C AMS laboratory evolved into a feasible project. This was finally reached in 2013, thanks to the technological developments in AMS and sample preparation with automated equipment, and the backing and support of the National Autonomous University of Mexico and the National Council for Science and Technology. The Mexican AMS Laboratory, LEMA, with a compact 1 MV system from High Voltage Engineering Europa, and its sample preparation laboratories with IonPlus automated graphitization equipment, is now a reality.


Author(s):  
Anna Bach ◽  
Heidi Fleischer ◽  
Bhagya Wijayawardena ◽  
Kerstin Thurow

Vitamin D belongs to the fat-soluble vitamins and is an integral part of bone metabolism. In the human body, a decreased vitamin D level can be an additional risk factor for diseases like cancer, diabetes, and mental diseases. As a result, an enormous increase in the demand for vitamin D testing has been observed in recent years, increasing the demand for powerful methods for vitamin D determination at the same time. Automation is the key factor in increasing sample throughput. This study compares three fully automated sample preparation methods for the determination of 25(OH)D2 and 25(OH)D3 in plasma and serum samples. Starting from a semiautomated reference method, the method is tested manually and subsequently fully automated on the Biomek i7 Workstation by integrating a centrifuge and a positive pressure extractor into the workstation. Alternatively, the centrifugation for the separation of protein aggregates and supernatant is replaced by a filter plate. Finally, the sample throughput is further increased by using phospholipid removal cartridges. The results show that phospholipid removal significantly increases the recovery rates in liquid chromatography–mass spectrometry. With the phospholipid removal cartridges, recovery rates of 97.36% for 25(OH)D2 and 102.5% for 25(OH)D3 were achieved, whereas with the automated classic automated preparation method, the recovery rates were 83.31% for 25(OH)D2 and 86.54% for 25(OH)D3. In addition to the technical evaluation, the different methods were also examined with regard to their economic efficiency. Finally, the qualitative and quantitative performance of the developed methods is benchmarked with a selected semiautomatic reference method.


Sign in / Sign up

Export Citation Format

Share Document