scholarly journals Dietary nitrate supplementation enhances high-intensity running performance in moderate normobaric hypoxia, independent of aerobic fitness

Nitric Oxide ◽  
2016 ◽  
Vol 59 ◽  
pp. 63-70 ◽  
Author(s):  
Oliver Michael Shannon ◽  
Lauren Duckworth ◽  
Matthew John Barlow ◽  
David Woods ◽  
Jose Lara ◽  
...  
2017 ◽  
Vol 49 (5S) ◽  
pp. 937
Author(s):  
Christopher Thompson ◽  
Anni Vanhatalo ◽  
Harry Jell ◽  
Jonathan Fulford ◽  
Lara Nyman ◽  
...  

Nitric Oxide ◽  
2016 ◽  
Vol 61 ◽  
pp. 55-61 ◽  
Author(s):  
Christopher Thompson ◽  
Anni Vanhatalo ◽  
Harry Jell ◽  
Jonathan Fulford ◽  
James Carter ◽  
...  

2019 ◽  
Vol 40 (10) ◽  
pp. 639-644 ◽  
Author(s):  
Emanuela Faelli ◽  
Vittoria Ferrando ◽  
Ambra Bisio ◽  
Mara Ferrando ◽  
Antonio La Torre ◽  
...  

AbstractThis study investigated the effects induced by 8 weeks of two high-intensity interval training (HIIT) protocols, 10–20–30 and 30–30 concepts, characterized by significantly different training volume and intensity, on physiological parameters, running performance, body composition and psychophysiological stress of recreational divided into two groups: the 10–20–30 group performed two 10–20–30 sessions/wk and one continuous training (CT)/wk, whilst the 30–30 group performed two 30–30 sessions/wk and one CT session/wk. VO2max, 1 km time, maximal aerobic speed (MAS), and body composition were evaluated before and after intervention. Internal load was measured through rating of perceived exertion (RPE). Both groups significantly improved running performance (1 km time: p=0.04; MAS: p=0.000001), aerobic fitness (VO2max: p=0.000002) and body composition (lean mass (kg) p=0.0001; fat mass (%) p=0.00005). RPE resulted significantly lower in the 10–20–30 group than in 30–30 group (10–20–30: 13.36±0.28; 30–30:15.55±0.21; p=0.0002). Thus, the 10–20–30 group improved physiological parameters, performance and body composition, similar to 30–30 with significantly lower RPE values. These results suggest that in recreational runners the 10–20–30 training is effective in improving aerobic fitness and performance, with a lower subjective perception of effort, thus enhancing individual compliance and adherence to the prescribed training program.


Author(s):  
Rachel Tan ◽  
Leire Cano ◽  
Ángel Lago-Rodríguez ◽  
Raúl Domínguez

Dietary nitrate supplementation is evidenced to induce physiological effects on skeletal muscle function in fast-twitch muscle fibers and may enhance high-intensity exercise performance. An important component of sport-specific skills is the ability to perform explosive movements; however, it is unclear if nitrate supplementation can impact explosive efforts. We examined the existing evidence to determine whether nitrate supplementation improves explosive efforts lasting ≤ 6 s. PubMed, Scopus and Directory of Open Access Journals (DOAJ) were searched for articles using the following search strategy: (nitrate OR nitrite OR beetroot) AND (supplement OR supplementation) AND (explosive OR power OR high intensity OR high-intensity OR sprint* OR “athletic performance”). Out of 810 studies, 18 were eligible according to inclusion criteria. Results showed that 4 of the 10 sprint-type studies observed improved sprint time, power output, and total work in cycling or running, whereas 4 of the 10 resistance-based exercise studies observed improvements to power and velocity of free-weight bench press as well as isokinetic knee extension and flexion at certain angular velocities. These results suggest that nitrate potentially improves explosive exercise performance, but further work is required to clarify the factors influencing the efficacy of nitrate in different exercise modalities.


2014 ◽  
Vol 9 (5) ◽  
pp. 845-850 ◽  
Author(s):  
Kristy Martin ◽  
Disa Smee ◽  
Kevin G. Thompson ◽  
Ben Rattray

Purpose:Nitrate supplementation improves endurance exercise and single bouts of high-intensity activity, but its effect on repeated sprints is unclear. This study is the first to investigate the effects of acute dietary nitrate supplementation during a high-intensity intermittent-sprint test to exhaustion.Methods:Team-sport athletes (9 male, age 22.3 ± 2.1 y, VO2max 57.4 ± 8.5 mL · kg−1 · min−1; 7 female, age 20.7 ± 1.3 y, VO2max 47.2 ± 8.5 mL · kg−1 · min−1) were assigned to a double-blind, randomized, crossover design. Participants consumed 70 mL of concentrated beetroot juice containing a minimum of 0.3 g of nitrate (NT) or 70 mL of placebo (PL) 2 h before a repeated-sprint protocol involving repeated 8-s sprints with 30-s recovery on a cycle ergometer to exhaustion.Results:Fewer sprints (NT = 13 ± 5 vs PL = 15 ± 6, P = .005, d = 0.41) and less total work (NT = 49.2 ± 24.2 kJ vs PL = 57.8 ± 34.0 kJ, P = .027, d = 0.3) were completed in NT relative to PL. However there was no difference in overall mean power output or the mean power output for each individual 8-s sprint.Conclusions:These findings suggest that dietary nitrate is not beneficial for improving repeated-sprint performance, at least when such sprints are near-maximal and frequent in nature. The lack of an effect of nitrate at near-maximal oxygen uptake supports the suggestion that at greater exercise intensities nitrate does not have an ergogenic effect.


2009 ◽  
Vol 107 (4) ◽  
pp. 1144-1155 ◽  
Author(s):  
Stephen J. Bailey ◽  
Paul Winyard ◽  
Anni Vanhatalo ◽  
Jamie R. Blackwell ◽  
Fred J. DiMenna ◽  
...  

Pharmacological sodium nitrate supplementation has been reported to reduce the O2cost of submaximal exercise in humans. In this study, we hypothesized that dietary supplementation with inorganic nitrate in the form of beetroot juice (BR) would reduce the O2cost of submaximal exercise and enhance the tolerance to high-intensity exercise. In a double-blind, placebo (PL)-controlled, crossover study, eight men (aged 19–38 yr) consumed 500 ml/day of either BR (containing 11.2 ± 0.6 mM of nitrate) or blackcurrant cordial (as a PL, with negligible nitrate content) for 6 consecutive days and completed a series of “step” moderate-intensity and severe-intensity exercise tests on the last 3 days. On days 4–6, plasma nitrite concentration was significantly greater following dietary nitrate supplementation compared with PL (BR: 273 ± 44 vs. PL: 140 ± 50 nM; P < 0.05), and systolic blood pressure was significantly reduced (BR: 124 ± 2 vs. PL: 132 ± 5 mmHg; P < 0.01). During moderate exercise, nitrate supplementation reduced muscle fractional O2extraction (as estimated using near-infrared spectroscopy). The gain of the increase in pulmonary O2uptake following the onset of moderate exercise was reduced by 19% in the BR condition (BR: 8.6 ± 0.7 vs. PL: 10.8 ± 1.6 ml·min−1·W−1; P < 0.05). During severe exercise, the O2uptake slow component was reduced (BR: 0.57 ± 0.20 vs. PL: 0.74 ± 0.24 l/min; P < 0.05), and the time-to-exhaustion was extended (BR: 675 ± 203 vs. PL: 583 ± 145 s; P < 0.05). The reduced O2cost of exercise following increased dietary nitrate intake has important implications for our understanding of the factors that regulate mitochondrial respiration and muscle contractile energetics in humans.


Author(s):  
George P. Robinson ◽  
Sophie C. Killer ◽  
Zdravko Stoyanov ◽  
Harri Stephens ◽  
Luke Read ◽  
...  

This study investigated whether supplementation with nitrate-rich beetroot juice (BR) can improve high-intensity intermittent running performance in trained males in normoxia and different doses of normobaric hypoxia. Eight endurance-trained males (, 62 ± 6 ml·kg−1·min−1) completed repeated 90 s intervals at 110% of peak treadmill velocity, from an initial step incremental test, interspersed by 60 s of passive recovery until exhaustion (Tlim). Participants completed the first three experimental trials during days 3, 5, and 7 of BR or nitrate-depleted beetroot juice (PLA) supplementation and completed the remaining experimental visits on the alternative supplement following at least 7 days of washout. The fraction of inspired oxygen during visits 1–3 was either 0.209, 0.182, or 0.157, equivalent to an altitude of 0, 1,200, and 2,400 m, respectively, and this order was replicated on visits 4–6. Arterial oxygen saturation declined dose dependently as fraction of inspired oxygen was lowered (p < .05). Plasma nitrite concentration was higher pre- and postexercise after BR compared with PLA supplementation (p < .05). There was no difference in Tlim between PLA and BR at 0 m (445 [324, 508] and 410 [368, 548] s); 1,200 m (341 [270, 390] and 332 [314, 356] s); or 2,400 m (233 [177, 373] and 251 [221, 323] s) (median and [interquartile range]; p > .05). The findings from this study suggest that short-term BR supplementation does not improve high-intensity intermittent running performance in endurance-trained males in normoxia or at doses of normobaric hypoxia that correspond to altitudes at which athletes typically train while on altitude training camps.


Sign in / Sign up

Export Citation Format

Share Document