scholarly journals Dietary nitrate supplementation improves sprint and high-intensity intermittent running performance

Nitric Oxide ◽  
2016 ◽  
Vol 61 ◽  
pp. 55-61 ◽  
Author(s):  
Christopher Thompson ◽  
Anni Vanhatalo ◽  
Harry Jell ◽  
Jonathan Fulford ◽  
James Carter ◽  
...  
Nitric Oxide ◽  
2016 ◽  
Vol 59 ◽  
pp. 63-70 ◽  
Author(s):  
Oliver Michael Shannon ◽  
Lauren Duckworth ◽  
Matthew John Barlow ◽  
David Woods ◽  
Jose Lara ◽  
...  

2017 ◽  
Vol 49 (5S) ◽  
pp. 937
Author(s):  
Christopher Thompson ◽  
Anni Vanhatalo ◽  
Harry Jell ◽  
Jonathan Fulford ◽  
Lara Nyman ◽  
...  

Author(s):  
Rachel Tan ◽  
Leire Cano ◽  
Ángel Lago-Rodríguez ◽  
Raúl Domínguez

Dietary nitrate supplementation is evidenced to induce physiological effects on skeletal muscle function in fast-twitch muscle fibers and may enhance high-intensity exercise performance. An important component of sport-specific skills is the ability to perform explosive movements; however, it is unclear if nitrate supplementation can impact explosive efforts. We examined the existing evidence to determine whether nitrate supplementation improves explosive efforts lasting ≤ 6 s. PubMed, Scopus and Directory of Open Access Journals (DOAJ) were searched for articles using the following search strategy: (nitrate OR nitrite OR beetroot) AND (supplement OR supplementation) AND (explosive OR power OR high intensity OR high-intensity OR sprint* OR “athletic performance”). Out of 810 studies, 18 were eligible according to inclusion criteria. Results showed that 4 of the 10 sprint-type studies observed improved sprint time, power output, and total work in cycling or running, whereas 4 of the 10 resistance-based exercise studies observed improvements to power and velocity of free-weight bench press as well as isokinetic knee extension and flexion at certain angular velocities. These results suggest that nitrate potentially improves explosive exercise performance, but further work is required to clarify the factors influencing the efficacy of nitrate in different exercise modalities.


2014 ◽  
Vol 9 (5) ◽  
pp. 845-850 ◽  
Author(s):  
Kristy Martin ◽  
Disa Smee ◽  
Kevin G. Thompson ◽  
Ben Rattray

Purpose:Nitrate supplementation improves endurance exercise and single bouts of high-intensity activity, but its effect on repeated sprints is unclear. This study is the first to investigate the effects of acute dietary nitrate supplementation during a high-intensity intermittent-sprint test to exhaustion.Methods:Team-sport athletes (9 male, age 22.3 ± 2.1 y, VO2max 57.4 ± 8.5 mL · kg−1 · min−1; 7 female, age 20.7 ± 1.3 y, VO2max 47.2 ± 8.5 mL · kg−1 · min−1) were assigned to a double-blind, randomized, crossover design. Participants consumed 70 mL of concentrated beetroot juice containing a minimum of 0.3 g of nitrate (NT) or 70 mL of placebo (PL) 2 h before a repeated-sprint protocol involving repeated 8-s sprints with 30-s recovery on a cycle ergometer to exhaustion.Results:Fewer sprints (NT = 13 ± 5 vs PL = 15 ± 6, P = .005, d = 0.41) and less total work (NT = 49.2 ± 24.2 kJ vs PL = 57.8 ± 34.0 kJ, P = .027, d = 0.3) were completed in NT relative to PL. However there was no difference in overall mean power output or the mean power output for each individual 8-s sprint.Conclusions:These findings suggest that dietary nitrate is not beneficial for improving repeated-sprint performance, at least when such sprints are near-maximal and frequent in nature. The lack of an effect of nitrate at near-maximal oxygen uptake supports the suggestion that at greater exercise intensities nitrate does not have an ergogenic effect.


2009 ◽  
Vol 107 (4) ◽  
pp. 1144-1155 ◽  
Author(s):  
Stephen J. Bailey ◽  
Paul Winyard ◽  
Anni Vanhatalo ◽  
Jamie R. Blackwell ◽  
Fred J. DiMenna ◽  
...  

Pharmacological sodium nitrate supplementation has been reported to reduce the O2cost of submaximal exercise in humans. In this study, we hypothesized that dietary supplementation with inorganic nitrate in the form of beetroot juice (BR) would reduce the O2cost of submaximal exercise and enhance the tolerance to high-intensity exercise. In a double-blind, placebo (PL)-controlled, crossover study, eight men (aged 19–38 yr) consumed 500 ml/day of either BR (containing 11.2 ± 0.6 mM of nitrate) or blackcurrant cordial (as a PL, with negligible nitrate content) for 6 consecutive days and completed a series of “step” moderate-intensity and severe-intensity exercise tests on the last 3 days. On days 4–6, plasma nitrite concentration was significantly greater following dietary nitrate supplementation compared with PL (BR: 273 ± 44 vs. PL: 140 ± 50 nM; P < 0.05), and systolic blood pressure was significantly reduced (BR: 124 ± 2 vs. PL: 132 ± 5 mmHg; P < 0.01). During moderate exercise, nitrate supplementation reduced muscle fractional O2extraction (as estimated using near-infrared spectroscopy). The gain of the increase in pulmonary O2uptake following the onset of moderate exercise was reduced by 19% in the BR condition (BR: 8.6 ± 0.7 vs. PL: 10.8 ± 1.6 ml·min−1·W−1; P < 0.05). During severe exercise, the O2uptake slow component was reduced (BR: 0.57 ± 0.20 vs. PL: 0.74 ± 0.24 l/min; P < 0.05), and the time-to-exhaustion was extended (BR: 675 ± 203 vs. PL: 583 ± 145 s; P < 0.05). The reduced O2cost of exercise following increased dietary nitrate intake has important implications for our understanding of the factors that regulate mitochondrial respiration and muscle contractile energetics in humans.


2016 ◽  
Vol 311 (6) ◽  
pp. H1520-H1529 ◽  
Author(s):  
Sinead T. J. McDonagh ◽  
Anni Vanhatalo ◽  
Jonathan Fulford ◽  
Lee J. Wylie ◽  
Stephen J. Bailey ◽  
...  

We tested the hypothesis that dietary nitrate (NO3−)-rich beetroot juice (BR) supplementation could partially offset deteriorations in O2transport and utilization and exercise tolerance after blood donation. Twenty-two healthy volunteers performed moderate-intensity and ramp incremental cycle exercise tests prior to and following withdrawal of ∼450 ml of whole blood. Before donation, all subjects consumed seven 70-ml shots of NO3−-depleted BR [placebo (PL)] in the 48 h preceding the exercise tests. During the 48 h after blood donation, subjects consumed seven shots of BR (each containing 6.2 mmol of NO3−, n = 11) or PL ( n = 11) before repeating the exercise tests. Hemoglobin concentration and hematocrit were reduced by ∼8–9% following blood donation ( P < 0.05), with no difference between the BR and PL groups. Steady-state O2uptake during moderate-intensity exercise was ∼4% lower after than before donation in the BR group ( P < 0.05) but was unchanged in the PL group. The ramp test peak power decreased from predonation (341 ± 70 and 331 ± 68 W in PL and BR, respectively) to postdonation (324 ± 69 and 322 ± 66 W in PL and BR, respectively) in both groups ( P < 0.05). However, the decrement in performance was significantly less in the BR than PL group (2.7% vs. 5.0%, P < 0.05). NO3−supplementation reduced the O2cost of moderate-intensity exercise and attenuated the decline in ramp incremental exercise performance following blood donation. These results have implications for improving functional capacity following blood loss.


Sign in / Sign up

Export Citation Format

Share Document