European Medicines Agency review of ataluren for the treatment of ambulant patients aged 5 years and older with Duchenne muscular dystrophy resulting from a nonsense mutation in the dystrophin gene

2015 ◽  
Vol 25 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Manuel Haas ◽  
Viktor Vlcek ◽  
Pavel Balabanov ◽  
Tomas Salmonson ◽  
Serge Bakchine ◽  
...  
2016 ◽  
Vol 47 (S 01) ◽  
Author(s):  
U. Schara ◽  
C. McDonald ◽  
K. Bushby ◽  
M. Tulinius ◽  
R. Finkel ◽  
...  

Author(s):  
Vratko Himič ◽  
Kay E. Davies

AbstractDuchenne muscular dystrophy (DMD) is an X-linked progressive muscle-wasting disorder that is caused by a lack of functional dystrophin, a cytoplasmic protein necessary for the structural integrity of muscle. As variants in the dystrophin gene lead to a disruption of the reading frame, pharmacological treatments have only limited efficacy; there is currently no effective therapy and consequently, a significant unmet clinical need for DMD. Recently, novel genetic approaches have shown real promise in treating DMD, with advancements in the efficacy and tropism of exon skipping and surrogate gene therapy. CRISPR-Cas9 has the potential to be a ‘one-hit’ curative treatment in the coming decade. The current limitations of gene editing, such as off-target effects and immunogenicity, are in fact partly constraints of the delivery method itself, and thus research focus has shifted to improving the viral vector. In order to halt the loss of ambulation, early diagnosis and treatment will be pivotal. In an era where genetic sequencing is increasingly utilised in the clinic, genetic therapies will play a progressively central role in DMD therapy. This review delineates the relative merits of cutting-edge genetic approaches, as well as the challenges that still need to be overcome before they become clinically viable.


Author(s):  
Claudia Brogna ◽  
Giorgia Coratti ◽  
Rachele Rossi ◽  
Marcella Neri ◽  
Sonia Messina ◽  
...  

2019 ◽  
Vol 8 ◽  
pp. 204800401987958
Author(s):  
HR Spaulding ◽  
C Ballmann ◽  
JC Quindry ◽  
MB Hudson ◽  
JT Selsby

Background Duchenne muscular dystrophy is a muscle wasting disease caused by dystrophin gene mutations resulting in dysfunctional dystrophin protein. Autophagy, a proteolytic process, is impaired in dystrophic skeletal muscle though little is known about the effect of dystrophin deficiency on autophagy in cardiac muscle. We hypothesized that with disease progression autophagy would become increasingly dysfunctional based upon indirect autophagic markers. Methods Markers of autophagy were measured by western blot in 7-week-old and 17-month-old control (C57) and dystrophic (mdx) hearts. Results Counter to our hypothesis, markers of autophagy were similar between groups. Given these surprising results, two independent experiments were conducted using 14-month-old mdx mice or 10-month-old mdx/Utrn± mice, a more severe model of Duchenne muscular dystrophy. Data from these animals suggest increased autophagosome degradation. Conclusion Together these data suggest that autophagy is not impaired in the dystrophic myocardium as it is in dystrophic skeletal muscle and that disease progression and related injury is independent of autophagic dysfunction.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 648
Author(s):  
Andrea L. Reid ◽  
Matthew S. Alexander

Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease caused by a pathogenic disruption of the DYSTROPHIN gene that results in non-functional dystrophin protein. DMD patients experience loss of ambulation, cardiac arrhythmia, metabolic syndrome, and respiratory failure. At the molecular level, the lack of dystrophin in the muscle results in myofiber death, fibrotic infiltration, and mitochondrial dysfunction. There is no cure for DMD, although dystrophin-replacement gene therapies and exon-skipping approaches are being pursued in clinical trials. Mitochondrial dysfunction is one of the first cellular changes seen in DMD myofibers, occurring prior to muscle disease onset and progresses with disease severity. This is seen by reduced mitochondrial function, abnormal mitochondrial morphology and impaired mitophagy (degradation of damaged mitochondria). Dysfunctional mitochondria release high levels of reactive oxygen species (ROS), which can activate pro-inflammatory pathways such as IL-1β and IL-6. Impaired mitophagy in DMD results in increased inflammation and further aggravates disease pathology, evidenced by increased muscle damage and increased fibrosis. This review will focus on the critical interplay between mitophagy and inflammation in Duchenne muscular dystrophy as a pathological mechanism, as well as describe both candidate and established therapeutic targets that regulate these pathways.


1970 ◽  
pp. 36-39
Author(s):  
M Robed Amin ◽  
Chowdhury Chironjib Borua ◽  
Kaji Shafiqul Alam ◽  
Fazle Rabbi Chowdhury ◽  
Rabiul Jahan Sarkar ◽  
...  

Progressive muscular weakness with deformity leading to crippled states develop due to musculoskeletal and neurological disorders. Sometimes it is difficult to differentiate between primary muscle disease and neurological disease. But there is some classical presentation of muscle diseases which have its own entity and thus can be clinically differentiated from neurological disorder especially spinal cord and motor neuron diseases. Muscular dystrophy is one of those disorder with distinct clinical features. Muscular dystrophy refers to a group of genetic, hereditary muscle diseases that cause progressive muscle weakness. Most types of MD are multi-system disorders with manifestations in body systems including skeletal system, the heart, gastrointestinal and nervous systems, endocrine glands, skin, eyes and other organs. Duchenne muscular dystrophy (DMD), is inherited in an X-linked recessive pattern, meaning that the mutated gene that causes the disorder is located on the X chromosome, one of the two sex chromosomes, and is thus considered sex-linked. Males are therefore affected by X-linked recessive disorders much more often than females. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. Duchenne muscular dystrophy and Backers muscular dystrophy are caused by mutations of the gene for the dystrophin protein and lead to an overabundance of the enzyme creatine kinase. The dystrophin gene is the largest gene in humans. In this case series a family with three brothers suffering from Duchenne muscular dystrophy is described and review with literature was done.   doi:10.3329/jom.v10i3.2015 J Medicine 2009; 10 (Supplement 1): 36-39


2009 ◽  
Vol 11 (1) ◽  
pp. 49-53 ◽  
Author(s):  
Atchara Tunteeratum ◽  
Rawiphan Witoonpanich ◽  
Suchart Phudhichareonrat ◽  
Jakris Eu-ahsunthornwattana ◽  
Sarinee Pingsuthiwong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document