Performance evaluating of the AP1000 passive safety systems for mitigation of small break loss of coolant accident using risk assessment tool-II software

2012 ◽  
Vol 253 ◽  
pp. 32-40 ◽  
Author(s):  
Shahabeddin Kamyab ◽  
Mohammadreza Nematollahi
Author(s):  
Wang Yuqi ◽  
Yu Aimin ◽  
Yang Qingming

This paper researched the behavior of 20mm break Loss of Coolant Accident (LOCA) which is located in the Direct Vessel Injection (DVI) line of the integrated small modular reactor (SMR) in case of full power with RELAP5-3KEYMASTER simulation system. The response of passive safety systems is analyzed and compared with the Primary Safety Analysis Report (PSAR) post-accident. Tendency for the variation of main parameters after the accident agree well with the PSAR, which validates the accuracy and rationality of the model, and solves the new problems in the process of modeling and provides an important tool for the research and development of SMR. Cooling and depressurization are calculated post-accident. The variation of main parameters post-accident and the accident advancement and results have been analyzed. Operation intervention is given and the effects with it are discussed. And the emergency strategy for development and verification of Emergency Operating Procedures (EOP) is given.


Kerntechnik ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. 244-255
Author(s):  
S. H. Abdel-Latif ◽  
A. M. Refaey

Abstract The AP600 is a Westinghouse Advanced Passive PWR with a two–loop 1 940 MWt. This reactor is equipped with advanced passive safety systems which are designed to operate automatically at desired set-points. On the other hand, the failure or nonavailability to operate of any of the passive safety systems may affect reactor safety. In this study, modeling and nodalization of primary and secondary loops, and all passive reactor cooling systems are conducted and a 10-inch cold leg break LOCA is analyzed using ATHLET 3.1A Code. During loss of coolant accident in which the passive safety system failure or nonavailability are considered, four different scenarios are assumed. Scenario 1 with the availability of all passive systems, scenario 2 is failure of one of the accumulators to activate, scenario 3 is without actuation of the automatic depressurization system (ADS) stages 1–3, and scenario 4 is without actuation of ADS stage 4. Results indicated that the actuation of passive safety systems provide sufficient core cooling and thus could mitigate the accidental consequence of LOCAs. Failure of one accumulator during LOCA causes early actuation of ADS and In-Containment Refueling Water Storage Tank (IRWST). In scenario 3 where the LOCA without ADS stages 1–3 actuations, the depressurization of the primary system is relatively slow and the level of the core coolant drops much earlier than IRWST actuation. In scenario 4 where the accident without ADS stage-4 activation, results in slow depressurization and the level of the core coolant drops earlier than IRWST injection. During the accident process, the core uncovery and fuel heat up did not happen and as a result the safety of AP600 during a 10-in. cold leg MBLOCA was established. The relation between the cladding surface temperature and the primary pressure with the actuation signals of the passive safety systems are compared with that of RELAP5/Mode 3.4 code and a tolerable agreement was obtained.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Anwar Hussain ◽  
Amjad Nawaz

The passive safety systems of AP1000 are designed to operate automatically at desired set-points. However, the unavailability or failure to operate of any of the passive safety systems will change the accident sequence and may affect reactor safety. The analysis in this study is based on some hypothetical scenarios, in which the passive safety system failure is considered during the loss of coolant accidents. Four different cases are assumed, that is, with all passive systems, without actuation of one of the accumulators, without actuation of ADS stages 1–3, and without actuation of ADS stage 4. The actuation of all safety systems at their actuation set-points provides adequate core cooling by injecting sufficient water inventory into reactor core. The LOCA with actuation of one of the accumulators cause early actuation of ADS and IRWST. In case of LOCA without ADS stages 1–3, the primary system depressurization is relatively slow and mixture level above core active region drops much earlier than IRWST actuation. The accident without ADS stage 4 actuation results in slow depressurization and mixture level above core active region drops earlier than IRWST injection. Moreover, the comparison of cladding surface temperature is performed in all cases considered in this work.


Sign in / Sign up

Export Citation Format

Share Document