Plant stanol esters in low-fat yogurt reduces total and low-density lipoprotein cholesterol and low-density lipoprotein oxidation in normocholesterolemic and mildly hypercholesterolemic subjects

2005 ◽  
Vol 25 (8) ◽  
pp. 743-753 ◽  
Author(s):  
Yae Jung Hyun ◽  
Oh Yoen Kim ◽  
Joo Byung Kang ◽  
Jong Ho Lee ◽  
Yangsoo Jang ◽  
...  
Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2346
Author(s):  
Helena Gylling ◽  
Timo E. Strandberg ◽  
Petri T. Kovanen ◽  
Piia Simonen

Atherosclerotic cardiovascular diseases (ASCVDs) cause every fifth death worldwide. However, it is possible to prevent the progression of ASCVDs by reducing circulating concentrations of low-density lipoprotein cholesterol (LDL-C). Recent large meta-analyses demonstrated that by reducing the dietary intake of saturated fat and cholesterol, it is possible to reduce the risk of ASCVD events. Plant stanols, as fatty-acid esters, were developed as a dietary adjunct to reduce LDL-C levels as part of a heart-healthy diet. They reduce cholesterol absorption so that less cholesterol is transported to the liver, and the expression of LDL receptors is upregulated. Ultimately, LDL-C concentrations are reduced on average by 9–12% by consuming 2–3 g of plant stanol esters per day. In this review, we discuss recent information regarding the prevention of ASCVDs with a focus on dietary means. We also present new estimates on the effect of plant stanol ester consumption on LDL-C levels and the risk of ASCVD events. Plant stanol esters as part of a heart-healthy diet plausibly offer a means to reduce the risk of ASCVD events at a population level. This approach is not only appropriate for subjects with a high risk of ASCVD, but also for subjects at an apparently lower risk to prevent subclinical atherosclerosis.


2021 ◽  
Vol 14 (6) ◽  
pp. 567
Author(s):  
Su Wutyi Thant ◽  
Noppawan Phumala Morales ◽  
Visarut Buranasudja ◽  
Boonchoo Sritularak ◽  
Rataya Luechapudiporn

Oxidation of low-density lipoprotein (LDL) plays a crucial role in the pathogenesis of atherosclerosis. Hemin (iron (III)-protoporphyrin IX) is a degradation product of hemoglobin that can be found in thalassemia patients. Hemin is a strong oxidant that can cause LDL oxidation and contributes to atherosclerosis in thalassemia patients. Lusianthridin from Dendrobium venustrum is a phenolic compound that possesses antioxidant activity. Hence, lusianthridin could be a promising compound to be used against hemin-induced oxidative stress. The major goal of this study is to evaluate the protective effect of lusianthridin on hemin-induced low-density lipoprotein oxidation (he-oxLDL). Here, various concentrations of lusianthridin (0.25, 0.5, 1, and 2 µM) were preincubated with LDL for 30 min, then 5 µM of hemin was added to initiate the oxidation, and oxidative parameters were measured at various times of incubation (0, 1, 3, 6, 12, 24 h). Lipid peroxidation of LDL was measured by thiobarbituric reactive substance (TBARs) assay and relative electrophoretic mobility (REM). The lipid composition of LDL was analyzed by using reverse-phase HPLC. Foam cell formation with he-oxLDL in RAW 264.7 macrophage cells was detected by Oil Red O staining. The results indicated that lusianthridin could inhibit TBARs formation, decrease REM, decrease oxidized lipid products, as well as preserve the level of cholesteryl arachidonate and cholesteryl linoleate. Moreover, He-oxLDL incubated with lusianthridin for 24 h can reduce the foam cell formation in RAW 264.7 macrophage cells. Taken together, lusianthridin could be a potential agent to be used to prevent atherosclerosis in thalassemia patients.


1993 ◽  
Vol 11 (10) ◽  
pp. 1103-1111 ◽  
Author(s):  
Elena Maggi ◽  
Eugenia Marchesi ◽  
Valentina Ravetta ◽  
Francesco Falaschi ◽  
Giorgio Finardi ◽  
...  

1998 ◽  
Vol 38 (2) ◽  
pp. 207-208
Author(s):  
L. Iughetti ◽  
C. Volta ◽  
E. Maggi ◽  
G. Bellomo ◽  
S. Bernasconi

Sign in / Sign up

Export Citation Format

Share Document