Rotor-floater-tether coupled dynamics including second-order sum–frequency wave loads for a mono-column-TLP-type FOWT (floating offshore wind turbine)

2013 ◽  
Vol 61 ◽  
pp. 109-122 ◽  
Author(s):  
Y.H. Bae ◽  
M.H. Kim
2020 ◽  
Vol 8 (11) ◽  
pp. 859
Author(s):  
Thanh-Dam Pham ◽  
Hyunkyoung Shin

Floating offshore wind turbines (FOWTs) have been installed in Europe and Japan with relatively modern technology. The installation of floating wind farms in deep water is recommended because the wind speed is stronger and more stable. The design of the FOWT must ensure it is able to withstand complex environmental conditions including wind, wave, current, and performance of the wind turbine. It needs simulation tools with fully integrated hydrodynamic-servo-elastic modeling capabilities for the floating offshore wind turbines. Most of the numerical simulation approaches consider only first-order hydrodynamic loads; however, the second-order hydrodynamic loads have an effect on a floating platform which is moored by a catenary mooring system. At the difference-frequencies of the incident wave components, the drift motion of a FOWT system is able to have large oscillation around its natural frequency. This paper presents the effects of second-order wave loads to the drift motion of a semi-submersible type. This work also aimed to validate the hydrodynamic model of Ulsan University (UOU) in-house codes through numerical simulations and model tests. The NREL FAST code was used for the fully coupled simulation, and in-house codes of UOU generates hydrodynamic coefficients as the input for the FAST code. The model test was performed in the water tank of UOU.


Author(s):  
Iman Ramzanpoor ◽  
Martin Nuernberg ◽  
Longbin Tao

Abstract The main drivers for the continued decarbonisation of the global energy market are renewable energy sources. Moreover, the leading technological solutions to achieve this are offshore wind turbines. As installed capacity has been increasing rapidly and shallow water near shore sites are exhausted, projects will need to be developed further from shore and often in deeper waters, which will pose greater technical challenges and constrain efforts to reduce costs. Current floating platform solutions such as the spar and semi-submersible rely on large amounts of ballast and complex structural designs with active stabilisation systems for stability of the floating offshore wind turbine platform (FOWT). The primary focus of this study is to present a design concept and mooring arrangement for an alternative floating platform solution that places emphasis on the mooring system to achieve stability for a FOWT. The tension leg buoy (TLB) is designed to support future 10MW offshore wind turbine generators. This paper presents the numerical methodology used for a coupled hydro-elastic analysis of the floater and mooring system under combined wind, wave and current effects. A concept TLB design is presented and its platform motion and mooring line tension characteristics are analysed for a three-hour time domain simulation representing operating and survival conditions in the northern North Sea with water depths of 110 metres. The importance of wave drift forces and the other non-linear excitation forces in the concept design stage are evaluated by comparing the motion and tension responses of three different numerical simulation cases with increasing numerical complexity. The preliminary TLB system design demonstrated satisfactory motion response for the operation of a FOWT and survival in a 100-year storm condition. The results show that accounting for second-order effect is vital in terms of having a clear understanding of the full behaviour of the system and the detailed response characteristics in operational and survival conditions. Extreme loads are significantly reduced when accounting for the second-order effects. This can be a key aspect to not overdesign the system and consequently achieve significant cost savings.


Author(s):  
Teng Wang ◽  
Hui Jin ◽  
Xiaoni Wu

The dynamic response of a tension leg platform (TLP) floating offshore wind turbine (FOWT) was analyzed with considering the aero-hydro characteristic of the whole floating wind turbine system including the wind turbine, TLP platform, and tethers. The “aero-hydro” coupled dynamic analysis was conducted in ansys-aqwa with a dynamic link library (DLL) calculating the aerodynamics loading at every steptime based on the blade element momentum theory. Results from the coupled dynamic analysis of TLP FOWT under the condition of turbulent wind and regular wave show that the wind loads influence mainly the low-frequency response of the TLP FOWT. The wind loads have a large impact on the offsets of the TLP away from the initial position while the wave loads influence mainly the fluctuation amplitude of the TLP FOWT. The average TLP pitch response under the wind load is significantly larger due to the large wind-induced heeling moment on the wind turbine. In addition, the tension of tethers at the upwind end is greater than that at the downwind end. The wind loads could reduce effectively the average tension of the tethers, and the tension of tethers is significantly affected by the pitch motion. Results from the coupled dynamic analysis of TLP FOWT under the condition of turbulent wind and irregular wave show that the surge and pitch of TLP result in an obvious increase of thrust of the turbine and the amplitude of torque fluctuation, more attention should be paid to the pitch and surge motion of TLP FOWT.


2021 ◽  
Vol 9 (11) ◽  
pp. 1232
Author(s):  
Xuan Mei ◽  
Min Xiong

In order to investigate the effects of second-order hydrodynamic loads on a 15 MW floating offshore wind turbine (FOWT), this study employs a tool that integrates AQWA and OpenFAST to conduct fully coupled simulations of the FOWT subjected to wind and wave loadings. The load cases covering normal and extreme conditions are defined based on the met-ocean data observed at a specific site. The results indicate that the second-order wave excitations activate the surge mode of the platform. As a result, the surge motion is increased for each of the examined load case. In addition, the pitch, heave, and yaw motions are underestimated when neglecting the second-order hydrodynamics under the extreme condition. First-order wave excitation is the major contributor to the tower-base bending moments. The fatigue damage of the tower-base under the extreme condition is underestimated by 57.1% if the effect of second-order hydrodynamics is ignored. In addition, the accumulative fatigue damage over 25 years at the tower-base is overestimated by 16.92%. Therefore, it is suggested to consider the effects of second-order wave excitations of the floating platform for the design of the tower to reduce the cost of the FOWT.


Sign in / Sign up

Export Citation Format

Share Document