Conceptual design of a hybrid propulsion underwater robotic vehicle with different propulsion systems for ocean observations

2019 ◽  
Vol 182 ◽  
pp. 112-125 ◽  
Author(s):  
Jagadeesh Kadiyam ◽  
Santhakumar Mohan

Author(s):  
Luca Boggero ◽  
Marco Fioriti ◽  
Sabrina Corpino

In this paper, an innovative methodology for the conceptual design of hybrid-powered airplanes is proposed. In particular, this work focuses on parallel hybrid architectures, in which the thermal engine is mechanically coupled to an electric motor, both supplying propulsive power during a limited number of flight phases, e.g. during takeoff and climb. This innovative solution is the subject of several studies being carried out since the current decade. In this paper, a brief overview of the works conducted by other researchers is provided. Then, an overall aircraft design methodology is proposed, which is derived from the most renewed design algorithms. The original contribution of this work is represented by the development of a methodology for the design of hybrid propulsion systems. Moreover, the proposed method is integrated within a global aircraft design methodology. In particular, several effects of the innovative system on the entire aircraft are considered, for instance the variation of the empty mass or the impacts on fuel consumption. The paper ends with some case studies of the proposed design methodology, and a discussion of the obtained results is provided.



Author(s):  
M Benatmane ◽  
B Salter

With the ever tightening of budgets and legislation, new vessel builds are facing tough times.  The future maritime industry requires more efficient vessels to minimise ship operational costs with cleaner technologies that meet stringent environment regulations, reduce greenhouse gas emissions, specifically carbon emissions. Emissions reduction continues to be high on the agenda for the marine industry, it is responsible for about 2.5 percent of global greenhouse emissions1 and is under great pressure to reduce its environmental impact. With pressure comes the opportunity to incentivize innovation, developments and implementation of energy efficient measures, both design and operational. Naval propulsion systems are no different from other industries, and the industry is exploring ways to optimise propulsion and electrical power generation systems architecture for better performance and efficiency. Electric technology plays a leading role. The paper will: Provide a brief overview about the hybrid propulsion concept, with key electrical, mechanical qualities and issues. Describe different designs configurations and performances of hybrid propulsion systems from demonstrated and operational systems in the commercial and naval world. Cover the lessons learnt in technologies and controls used on such systems. Examine future architectures including energy storage and explore the benefits and the flexibility these can bringto the hybrid propulsion sphere.







2020 ◽  
pp. 5-14
Author(s):  
A.V. Varyukhin ◽  
V.S. Zakharchenko ◽  
A.V. Geliev ◽  
M.V. Gordin ◽  
I.O. Kiselev ◽  
...  


2021 ◽  
Vol 14 (2) ◽  
pp. 80
Author(s):  
Anton Varyukhin ◽  
Viktor Zakharchenko ◽  
Mikhail Gordin ◽  
Flyur Ismagilov ◽  
Viacheslav Vavilov ◽  
...  


1996 ◽  
pp. 179-194 ◽  
Author(s):  
Scott McMillan ◽  
David E. Orin ◽  
Robert B. McGhee


2015 ◽  
Vol 4 (2) ◽  
pp. 67-72 ◽  
Author(s):  
Самойлов ◽  
M. Samoylov ◽  
Бурцев ◽  
S. Burtsev ◽  
Симаков ◽  
...  

The influence of the circuitry of the hybrid power plant short and medium haul aircraft on their fuel efficiency and environmental characteristics have been investigated. Directions of improvement of traditional patterns of power plants of aircraft on the example of PD-14 engine were analyzed. It has been shown that the use of turbojet engines and traditional schemes operating on aviation kerosene, will not allow to fulfill the demands made by the International Civil Aviation Organization (ICAO) to perspective plane 2025–2035. The analysis of the three schemes hybrid propulsion systems has been performed. It has been shown that using the presented hybrid propulsion systems of alternative fuels can reduce CO2 emissions by 19% to 20% compared with conventional turbojet engines, which run on kerosene TS-1. It has been shown that this fuel efficiency is increased by 2–3%, and the total mass of the power plant increases of 6 to 16%.



Sign in / Sign up

Export Citation Format

Share Document