Naval Hybrid Power Take-Off and Power Take-In – Lessons Learnt and Future Advances

Author(s):  
M Benatmane ◽  
B Salter

With the ever tightening of budgets and legislation, new vessel builds are facing tough times.  The future maritime industry requires more efficient vessels to minimise ship operational costs with cleaner technologies that meet stringent environment regulations, reduce greenhouse gas emissions, specifically carbon emissions. Emissions reduction continues to be high on the agenda for the marine industry, it is responsible for about 2.5 percent of global greenhouse emissions1 and is under great pressure to reduce its environmental impact. With pressure comes the opportunity to incentivize innovation, developments and implementation of energy efficient measures, both design and operational. Naval propulsion systems are no different from other industries, and the industry is exploring ways to optimise propulsion and electrical power generation systems architecture for better performance and efficiency. Electric technology plays a leading role. The paper will: Provide a brief overview about the hybrid propulsion concept, with key electrical, mechanical qualities and issues. Describe different designs configurations and performances of hybrid propulsion systems from demonstrated and operational systems in the commercial and naval world. Cover the lessons learnt in technologies and controls used on such systems. Examine future architectures including energy storage and explore the benefits and the flexibility these can bringto the hybrid propulsion sphere.

Subject The shipping sector and climate targets. Significance More than 100 maritime industry chief executives wrote to the International Maritime Organisation (IMO) on April 30 suggesting imposing speed limits on commercial ships to protect the environment. Ship owners face difficult choices in deciding on propulsion systems for new vessels that might be in service for 20 years or more, as operational and design changes are required alongside hybrid propulsion systems to maximise fuel efficiency. Tightening regulations on air pollutants and greenhouse gases threatens to strand current technologies. Impacts Design choices will widen as new technologies are tested and refined. Fossil fuel costs will ensure continuing momentum for developing and adopting more fuel-efficient engines for new and existing ships. Ship operators are likely to resist mandatory operational requirements to reduce carbon emissions.


Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 6
Author(s):  
Roberto Capata

This research aims to test the feasibility of a prototype of a newly designed thermal engine for a hybrid propulsion vehicle. This study consists of the implementation of an innovative supercharger for city car ICE (900cc). The preliminary proposal presented here is to mechanically disconnect the compressor/turbine device, supporting the rotation of the compressor with a dedicated electric motor and connecting a turbine to a generator. Mechanical decoupling will allow both machines to be designed for operating closer to their maximum performance point, for most of the expected real field of operation. Specifically, the turbine is likely to have a slightly lower rotation speed than the original group and will, therefore, be slightly larger. The advantage is that, while in the current supercharger groups the surplus at high regimes is discharged through the waste-gate valve without expanding in a turbine, in the configuration proposed, all the energy of the combustible gases is used by the turbine to generate electrical power that can be used where required. Once the motorization of the vehicle (999 cc) has been fixed, the two turbomachines will have to be studied and designed, looking, where possible, for commercial components. Finally, a CFD will be needed to verify the validity of the choice, followed by careful experimentation campaigns.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Roberto Capata

This research aims to test the feasibility of a prototype of a newly designed thermal engine for a hybrid propulsion vehicle. This study consists of the implementation of an innovative supercharger for city car internal combustion engine ICE (900 cc). The preliminary proposal presented here is to mechanically disconnect the compressor/turbine device, supporting the rotation of the compressor with a dedicated electric motor and connecting a turbine to a generator. Mechanical decoupling will allow both machines to be designed for operating closer to their maximum performance point, for most of the expected real field of operation. Specifically, the turbine is likely to have a lower rotation speed than the original group and will, therefore, be slightly larger. The advantage is that, while in the current supercharger groups the surplus at high regimes is discharged through the waste-gate valve without expanding in a turbine, in the configuration proposed, all the energy of the combustible gases is used by the turbine to generate electrical power that can be used where required. Once the motorization of the vehicle (999 cc) has been fixed, the two turbomachines will have to be studied and designed, looking where possible, for commercial components. Finally, a computational fluid dynamic CFD will be needed to verify the validity of the choice, followed by careful experimentation campaigns.


2015 ◽  
Vol 4 (2) ◽  
pp. 67-72 ◽  
Author(s):  
Самойлов ◽  
M. Samoylov ◽  
Бурцев ◽  
S. Burtsev ◽  
Симаков ◽  
...  

The influence of the circuitry of the hybrid power plant short and medium haul aircraft on their fuel efficiency and environmental characteristics have been investigated. Directions of improvement of traditional patterns of power plants of aircraft on the example of PD-14 engine were analyzed. It has been shown that the use of turbojet engines and traditional schemes operating on aviation kerosene, will not allow to fulfill the demands made by the International Civil Aviation Organization (ICAO) to perspective plane 2025–2035. The analysis of the three schemes hybrid propulsion systems has been performed. It has been shown that using the presented hybrid propulsion systems of alternative fuels can reduce CO2 emissions by 19% to 20% compared with conventional turbojet engines, which run on kerosene TS-1. It has been shown that this fuel efficiency is increased by 2–3%, and the total mass of the power plant increases of 6 to 16%.


This paper outlines the development of superconducting d.c. machines at I.R.D. where most of the work to date has been undertaken. Particular emphasis will be placed upon the industrial applications for these machines and the paper contains illustrations of the superconducting marine propulsion systems now under construction. The object of the presentation is to demonstrate that superconducting d.c. machines are now available for industrial application after a relatively short period of development. The paper also indicates the substantial advantages to be gained from the successful development of superconducting a.c. generators. The work which is necessary before these machines may be put into production will be discussed by consideration of the principal problem areas. Finally, conclusions are drawn on the present status of superconducting machines and the changing attitudes in industry towards this new technology.


2013 ◽  
pp. 163-199
Author(s):  
Lino Guzzella ◽  
Antonio Sciarretta

Sign in / Sign up

Export Citation Format

Share Document